Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One...

24
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    220
  • download

    4

Transcript of Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One...

Page 1: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,
Page 2: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

Stat 153 - 7 Oct 2008 D. R. Brillinger

Chapter 6 - Stationary Processes in the Frequency Domain

One model

Another

,...2,1,0 )cos( tZtRX tt

,...2,1,0 )cos( }exp{ tZttRX tt

R: amplitude

α: decay rate

ω: frequency, radians/unit time

φ: phase

Page 3: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

2π/ω: period, time units

cos(ω{t+2π/ω}+φ) = cos(ωt++φ)

cos(2π+φ)=cos(φ)

f= ω/2π: frequency in cycles/unit time

Page 4: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,
Page 5: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,
Page 6: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

6.2 The spectral distribution function

Stochastic models. Have advantages

0mean t.s.stationary : )cos( i). ttt ZZtRX

)()( )cos()( hhtRt ZZ

)U(0,2: )cos( ii). tRX t

paramsin linear ),sin()cos(

)sin()sin()cos()cos()cos(

tt

tRtRtR

2/)cos( 0 2

h hREX t

π=3.14159...

Page 7: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

)IU(0,2: )cos( iii).1

jjjj

k

jt tRX

J

jjjh hR

1

2 2/)cos(

Graph like pmf, f, or cdf, F

0

,...2,1,0 ),()cos( hdFhh

tVarXF )(0

Page 8: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

6.3 Spectral density function, f.

F, spectral distribution function

sfrequencie ofon distributi continuous )(

)(

ddF

f

0

)()cos( dfhh

0

0 )( df

"f(ω)dω represents the contribution to variance of the components

with frequencies in the range (ω,ω+dω)"

Page 9: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

0

)()cos( dfhh

Inversion

10 )cos(2

1)(

kh hf

Properties

f(-ω) = f(ω) symmetric

f(ω+2π) = f(ω) periodic

f(ω) 0 nonnegative

fundamental domain [0,π] (Nyquist frequency)

Page 10: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

6.5 Selected spectra

(1). Purely random

0 0

0 2

h

hZh

/)( 2

Zf

white noise

Page 11: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,
Page 12: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

MA(1). Xt = Zt + βZt-1

otherwise

k

kk

X

X

0

1 )1/(

0 )(22

2

222 )1( ZX

)1/()cos(2(11

)( 22

Xf

Page 13: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

AR(1). Xt = αXt-1 + Zt |α | < 1

,...1,0 || )( 2 kk k

X

)1/( 222 ZX

))cos(21(/)1( )( 222

X f

Geometric series

1|| ...1)1/(1 2

Page 14: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,
Page 15: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,
Page 16: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

Appendix B. Dirac delta function

Discrete random variables versus continuous

pmf versus pdf

Sometines it is convenient to act as if discrete is continuous

Page 17: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

Random variable X

Prob{X=0} = 1

Prob{X 0} = 0

For function g(x), E{g(X)} = g(0)

Cdf F(x) = 0 x<0

= 1 x 0

pdf δ(x) the Dirac delta function, a generalized function

(x)dx=1, (x)g(x)dx=g(0), (y-x)g(x)dx=g(y)

(0)= (x)=0, x 0 N(0,0)

Page 18: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

Sinusoid/cosinusoid.

cos(ω0t+φ) φ: U(0,2π), ω0 fixed

)cos()( 021 kk

This process is not mixing

the values are not asymptotically independent

but it is important

What are f(ω) and F(ω)?

With ω0 known series is perfectly predictable

Page 19: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

Review.

γ(h) = Cov(Xt ,Xt+h)

0

)()cos()( dfhh

10 )cos()(2

1)(

khkf

All angles in [0,π]

Page 20: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

Case of

Rcos(ω0t+φ) φ: U(0,2π), ω0 fixed

)cos()( 0

221 kRk

df )()cos(k 0

Solve for f(.)

d)()cos(k 00

Consider

= cos(kω0 )

Answer. )()( 0

221 Rf

Page 21: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

spectral density - peaks go to infinity

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

frequency (cycles/unit time)

Series1

Infinite spike at ω = ω0

Spectral density

Page 22: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

Several frequencies.

Σj Rjcos(ωjt+φj) φj: IU(0,2π), ωj fixed

)()( 221

jjj Rf

Page 23: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

frequency (cycles/unit time)

Series1

infinite spikes at ωj's

Spectral density

Page 24: Stat 153 - 7 Oct 2008 D. R. Brillinger Chapter 6 - Stationary Processes in the Frequency Domain One model Another R: amplitude α: decay rate ω: frequency,

Power spectra are like variances

Suppose {Xt} and {Yt} uncorrelated at all lags, then

fX+Y(ω) = fX(ω) + fY(ω)

Cp. if X and Y uncorrelated then

Var(X+Y) = Var(X) + Var(Y)

Example. Xt = Rcos(ω0t+φ) + Zt

/ )()( 2

0

221

ZRf