Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102...

20
Standard Model Three-loop Beta-functions Gauge couplings.Yukawa couplings. Higgs self-interaction. Andrey Pikelner in collaboration with: A.Bednyakov and V.Velizhanin BLTP,JINR Erice,2013

Transcript of Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102...

Page 1: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Standard Model Three-loop Beta-functionsGauge couplings.Yukawa couplings. Higgs self-interaction.

Andrey Pikelner

in collaboration with: A.Bednyakov and V.Velizhanin

BLTP,JINR

Erice,2013

Page 2: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Running couplings in the Standard Model

QCD

O(α )

251 MeV

178 MeV

Λ MS(5)

α (Μ )s Z

0.1215

0.1153

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100Q [GeV]

Heavy Quarkonia

Hadron Collisions

e+e- Annihilation

Deep Inelastic Scattering

NL

O

NN

LO

TheoryData

Lat

tice

213 MeV 0.1184s4 {

Figure : Famous running coupling

� Parameters from experiment atscale µ0

� Matching to MS

� Evolution from µ0 to µ usingβαs = dαs(µ)

d log(µ)

� Obtain same at µ

� Compare, tuneparameters,repeat

Scales available at experiment

2 / 15

Page 3: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Running couplings in the Standard Model

102 104 106 108 1010 1012 1014 1016 1018 1020

0.0

0.2

0.4

0.6

0.8

1.0

RGE scale Μ in GeV

SMco

uplin

gs

g1

g

gsyt

Λyb

Figure : SM running couplings

� Parameters from experiment atscale µ0 still available

� Matching to MS, precise mt

and mH needed for yt and λ

� Evolution from µ0 to µ usingβi = dgi(µ)

d log(µ)gi = g1, g2, gs, yt, yb, yτ , λ

� Evolution up to scale µ, but allequations are coupledβ = β(g1, g2, gs, yt, yb, yτ , λ)

� For extrapolation we need toextend all β in full model from2-loops to 3-loops

3 / 15

Page 4: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Motivation

1. Is the Standard Model still valid up to a Planck scale?� At the scale Λ ∼ 1018GeV, Λ� µ0 effective potential may be

approximated:

Veff ≈ λ(Λ)Φ4 +O(λ2(Λ), g2i (Λ))

� Vacuum stable if Veff > 0 from µ0 upto Λ� Equal to precise determination of λ(Λ) sign at Λ-scale� Minimal stability bound 129± 3 GeV is very close to mH

2. Calculations in full theory analyticaly w/o additionalassumptions� Computtional methods testing� MS-scheme is used� all fields are massless

4 / 15

Page 5: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Motivation

1. Is the Standard Model still valid up to a Planck scale?� At the scale Λ ∼ 1018GeV, Λ� µ0 effective potential may be

approximated:

Veff ≈ λ(Λ)Φ4 +O(λ2(Λ), g2i (Λ))

� Vacuum stable if Veff > 0 from µ0 upto Λ� Equal to precise determination of λ(Λ) sign at Λ-scale� Minimal stability bound 129± 3 GeV is very close to mH

2. Calculations in full theory analyticaly w/o additionalassumptions� Computtional methods testing� MS-scheme is used� all fields are massless

4 / 15

Page 6: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Available results for beta-functions

� 4-loop QCDT. van Ritbergen, J.A.M. Vermaseren, and S.A. Larin. In: Phys.Lett. B400 (1997)

� 2-loop Standard ModelH. Arason, D.J. Castano, B. Keszthelyi, S. Mikaelian, E.J. Piard, et al. In: Phys.Rev. D46 (1992) Ming-xing Luo

and Yong Xiao. In: Phys.Rev.Lett. 90 (2003) C. Ford, I. Jack, and D.R.T. Jones. In: Nucl.Phys. B387 (1992)

� 3-loop SM gauge couplingsLuminita N. Mihaila, Jens Salomon, and Matthias Steinhauser. In: Phys.Rev.Lett. 108 (2012)

� 3-loop αs + yt + λK.G. Chetyrkin and M.F. Zoller. In: JHEP 1206 (2012)

Full SM results, this workα1, α2, αs A.V. Bednyakov, A.F. Pikelner, and V.N. Velizhanin. In: JHEP 1301 (2013)

yt, yb, yτ A.V. Bednyakov, A.F. Pikelner, and V.N. Velizhanin. In: Phys.Lett. B722 (2013)

λ, µ A.V. Bednyakov, A.F. Pikelner, and V.N. Velizhanin. In: arXiv:1303.4364 [hep-ph] (2013)

5 / 15

Page 7: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Available results for beta-functions

� 4-loop QCDT. van Ritbergen, J.A.M. Vermaseren, and S.A. Larin. In: Phys.Lett. B400 (1997)

� 2-loop Standard ModelH. Arason, D.J. Castano, B. Keszthelyi, S. Mikaelian, E.J. Piard, et al. In: Phys.Rev. D46 (1992) Ming-xing Luo

and Yong Xiao. In: Phys.Rev.Lett. 90 (2003) C. Ford, I. Jack, and D.R.T. Jones. In: Nucl.Phys. B387 (1992)

� 3-loop SM gauge couplingsLuminita N. Mihaila, Jens Salomon, and Matthias Steinhauser. In: Phys.Rev.Lett. 108 (2012)

� 3-loop αs + yt + λK.G. Chetyrkin and M.F. Zoller. In: JHEP 1206 (2012)

Full SM results, this workα1, α2, αs A.V. Bednyakov, A.F. Pikelner, and V.N. Velizhanin. In: JHEP 1301 (2013)

yt, yb, yτ A.V. Bednyakov, A.F. Pikelner, and V.N. Velizhanin. In: Phys.Lett. B722 (2013)

λ, µ A.V. Bednyakov, A.F. Pikelner, and V.N. Velizhanin. In: arXiv:1303.4364 [hep-ph] (2013)

5 / 15

Page 8: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Main ingridients

1. Complicated Feynman rules� Many fields and couplings� A lot of parameters in model

Solution: LanHEP + unbroken model

2. Complicated diagrams� From 10k to 10000k diagrams� Permutations of legs

Solution: FeynArts/Diana(QGRAF)

3. Complicated loop integrals� 2,3,4-point diagrams� Spurious IR-poles

Solution: MINCER+IRR, Massive bubbles

LanHEP

FeynArts

DIANA(QGRAF)

Model

Map

MINCER/MATAD

6 / 15

Page 9: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Main ingridients

1. Complicated Feynman rules� Many fields and couplings� A lot of parameters in model

Solution: LanHEP + unbroken model

2. Complicated diagrams� From 10k to 10000k diagrams� Permutations of legs

Solution: FeynArts/Diana(QGRAF)

3. Complicated loop integrals� 2,3,4-point diagrams� Spurious IR-poles

Solution: MINCER+IRR, Massive bubbles

LanHEP

FeynArts

DIANA(QGRAF)

Model

Map

MINCER/MATAD

6 / 15

Page 10: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Main ingridients

1. Complicated Feynman rules� Many fields and couplings� A lot of parameters in model

Solution: LanHEP + unbroken model

2. Complicated diagrams� From 10k to 10000k diagrams� Permutations of legs

Solution: FeynArts/Diana(QGRAF)

3. Complicated loop integrals� 2,3,4-point diagrams� Spurious IR-poles

Solution: MINCER+IRR, Massive bubbles

LanHEP

FeynArts

DIANA(QGRAF)

Model

Map

MINCER/MATAD

6 / 15

Page 11: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Gauge couplings.Background Field Method

SM in Background Field gauge

LC(V )→ LC(V + V ),√ZViZgi = 1

Vi = (B, W , G), gi = (g1, g2, gs)

Advantages:

� Less gauge fixing parameters

� only 2-point functions needed: MINCER

Disadvantages:

� 2xN fields

� Complicated feynman rules

We implimmented SM in BGF formalism in LanHEP from: Ansgar Denner,

Georg Weiglein, and Stefan Dittmaier. In: Nucl.Phys. B440 (1995)

Our work is generalization for several gauge couplings of this:A.G.M. Pickering, J.A. Gracey, and D.R.T. Jones. In: Phys.Lett. B510 (2001)

7 / 15

Page 12: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Gauge couplings.Results� Unification scale moves to higher energies� Three-loop result is enough

log10

(µ/GeV)

α1, α

2, α

3

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

2 4 6 8 10 12 14 16log10(µ/GeV)

α 1,α2

0.235

0.2353

0.2355

0.2358

0.236

0.2363

0.2365

0.2368

0.237

x10-1

12.98 13 13.02 13.04 13.06 13.08

1-loop

2-loop

3-loop

α1, α2, αsResults for gauge couplings beta-functions, and fieldsanomalous dimensions in computer readable form:

http://arxiv.org/src/1210.6873/anc8 / 15

Page 13: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Yukawa couplings.One more leg

In MS scheme is no dependence on internal masses and distributionof external momentum

Sample Yukawa vertex 3-loop diagram. Higgs leg nullified

MINCER topology NO

Problem:

Problem: Naive nullification is dangerous: spurious IR-poles� In general assymptotic expansion in external momentum needed

But: for ffH-vertex it’s not needed

9 / 15

Page 14: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Yukawa couplings. Results

β(3)t ' 1.51y3t − 0.63asy

2t + 0.22a2syt

− 0.11a2y2t

+0.07y2t λ− 0.06a3s

β(3)b ' 1.34y3t − 0.19a2syt − 0.09a3s − 0.06a2y

2t − 0.04a2asyt + 0.03asy

2t

β(3)τ ' 1.19y3t − 0.24asy

2t + 0.09a2syt − 0.04a2y

2t − 0.01y2t λ

Already known result

Full results for Yukawa couplings beta-functions, in computerreadable form: http://arxiv.org/src/1212.6829/anc

10 / 15

Page 15: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Yukawa couplings. Results

β(3)t ' 1.51y3t − 0.63asy

2t + 0.22a2syt − 0.11a2y

2t +0.07y2t λ− 0.06a3s

β(3)b ' 1.34y3t − 0.19a2syt − 0.09a3s − 0.06a2y

2t − 0.04a2asyt + 0.03asy

2t

β(3)τ ' 1.19y3t − 0.24asy

2t + 0.09a2syt − 0.04a2y

2t − 0.01y2t λ

Already known result

Full results for Yukawa couplings beta-functions, in computerreadable form: http://arxiv.org/src/1212.6829/anc

10 / 15

Page 16: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Higgs self-coupling at three loops

Problem:

� Diagrams with four legs

� We cannot safely nullify two of them

Possible solutions:

1. Repeat assymptotic expansion in external momentum twice2. Nullify one momentum, but reduce problem to calculation of

three-loop IR-safe vertex integrals.3. mass as IR-regulator

� Remove all legs

� Artificial mass for all propagators.

� Fully massive bubble integrals are known.

p3

p1

p4

p2p2p5

p5 p4

p6

p2

p1

p3

11 / 15

Page 17: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Higgs self-coupling. Three-loop resultSign of λ - as a test of vacuum stability

100 105 108 1011 1014 1017 1020-0.05

0.00

0.05

0.10

0.15

0.20

Scale Μ, GeV

Λ

Topmass Mt =172.9 GeV

1-loop

2-loop

3-loop

100 105 108 1011 1014 1017 1020-0.05

-0.04

-0.03

-0.02

-0.01

Scale Μ, GeV

Λ

Topmass Mt =172.9 GeV

1-loop

2-loop

3-loop

� Three-loop result is enough for precision

� Main uncertainty from mt and mH

Full results for Higgs self-coupling and mass parameterbeta-functions, in computer readable form:

http://arxiv.org/src/1303.4364/anc12 / 15

Page 18: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Standard Model stability investigation with βλ� λ < 0 if Mh < 111GeV is a strong evidence for new physics, but

excluded in direct measurements� Metastable region coincides with measured mt and mH , λ0

SM asymptotycally free?� Landau-pole is higher than Planck-scale,Λ > MPL,SM is valid

effective theory from Fermi to Planck scales

150 160 170 180 190 200

0.2

0.1

0.0

0.1

Top quarkmass, GeV

Λ

GUT scale Μ 10^18, GeV

130GeV

115GeV

80GeV

Higgs mass

100 105 108 1011 1014 1017 10200.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Scale Μ, GeV

Λ

Topmass Mt 172.9 GeV

80GeV115GeV126GeV135GeV170GeV

Higgs mass

13 / 15

Page 19: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Strong dependence on SM parameters deviations

100 105 108 1011 1014 1017 1020

0.02

0.00

0.02

0.04

0.06

Scale , GeVμ

Higgs mass Mh 126 GeV

mH+/-2.2mt+/-1.6

as+/-0.0002

mH+/-1.2

λ

dotted:αs ± 0.0002 dashed:mt = 172.9± 1.6GeV ,filled regions:mH = 126± 1.2GeV ,mH ± 2.2GeV

14 / 15

Page 20: Standard Model Three-loop Beta-functions2013/06/30  · Running couplings in the Standard Model 102 104 106 108 1010 1012 1014 1016 1018 1020 0.0 0.2 0.4 0.6 0.8 1.0 RGE scale min

Conclusion

1. Gauge couplings beta-functions in SM are calculated - independentcheck

2. Yukawa couplings beta-functions - new result

3. Higgs self-coupling and mass parameter beta-functions

4. Set of programs for calculations in more complicated models.

5. High precision available in calculations, but comparableprecision in mt and mH determination needed fromexperiment

15 / 15