Solution of time-dependent Boltzmann equation for electrons...

40
Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Z. Bonaventura, D. Trunec Department of Physical Electronics Faculty of Science · Masaryk University Kotl ´ rsk´ a 2, Brno, CZ-61137, Czech Republic Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondˇ rejov, 18. 10. 2007 1 / 41

Transcript of Solution of time-dependent Boltzmann equation for electrons...

Page 1: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Solution of time-dependent Boltzmann equation forelectrons in non-thermal plasma

Z. Bonaventura, D. Trunec

Department of Physical ElectronicsFaculty of Science · Masaryk University

Kotlarska 2, Brno, CZ-61137, Czech Republic

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 1 / 41

Page 2: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Description of plasma

• Kinetic description :⊲ most fundamental way providing f (r , v , t)⊲ achieved by solving the Boltzmann equation⊲ self-consistently determined the electromagnetic fields via

Maxwell’s equations

• Fluid description:⊲ description of the plasma based on macroscopic quantities⊲ fluid equations obtained by taking velocity moments of the BE

• Hybrid description:⊲ a combination of fluid and kinetic models

treating some components of the system as a fluidand others kinetically

• Gyrokinetic Description:⊲ appropriate to systems with a strong background magnetic field⊲ the kinetic equations are averaged over the fast

circular motion of the gyroradiusZ. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 2 / 41

Page 3: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

What will I talk about?

• weakly ionized plasma (small fraction of the atoms are ionized)

• moderate pressure (∼ 1 Torr)

• non-thermal or ’cold’ plasma (Te >> Tion = Tgas)

• non-magnetized plasma (B=0)

• solution of linear Boltzmann equation for electrons

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 3 / 41

Page 4: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

What will I talk about?

• weakly ionized plasma (small fraction of the atoms are ionized)

• moderate pressure (∼ 1 Torr)

• non-thermal or ’cold’ plasma (Te >> Tion = Tgas)

• non-magnetized plasma (B=0)

• solution of linear Boltzmann equation for electrons

Are you still interested?

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 4 / 41

Page 5: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

The Boltzmann equation

The Boltzmann equation is an equation for the time evolution of thedistribution function f (r , v , t) in phase space, where r and v areposition and velocity

∂f∂t

+ v · ∇r f + a · ∇v f =∂f∂t

c

We will discussed the Boltzmann equation with a collision term for

two-body collisions between particles of different types that areassumed to be uncorrelated prior to the collision: the linearBoltzmann equation .

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 5 / 41

Page 6: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

The Boltzmann equation

The Boltzmann equation is an equation for the time evolution of thedistribution function f (r , v , t) in phase space, where r and v areposition and velocity

∂f∂t

+ v · ∇r f + a · ∇v f =∂f∂t

c

We will discussed the Boltzmann equation with a collision term for

two-body collisions between particles of different types that areassumed to be uncorrelated prior to the collision: the linearBoltzmann equation .

How we can solve it?

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 6 / 41

Page 7: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

How to solve the Boltzmann equation?

There are generally two ways:

• Monte Carlo methods (TPMC, PIC/MCC)⊲ A way how to solve it without solving it

• Actual solution of “The Equation ”⊲ difficult but in simple cases and with approximations it is feasible

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 7 / 41

Page 8: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Monte Carlo methods

• a way how to obtain results with minimum of approximations

• MC:Solves a particle charge transport by the numerical simulation of largeparticle ensemble, collision processes are introduced by generatingappropriately distributed random numbers.

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 8 / 41

Page 9: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Monte Carlo methods

• a way how to obtain results with minimum of approximations

• MC:Solves a particle charge transport by the numerical simulation of largeparticle ensemble, collision processes are introduced by generatingappropriately distributed random numbers.

How does it work?

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 9 / 41

Page 10: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Consider n-dimensional integral

I =

∫ 1

0· · ·

∫ 1

0f (x1, . . . , xn) dnx ,

in n-cube of unit volume. It is the mean value

I = 〈f 〉.

MC gives us an approximation of exact value of the mean value withstatistic estimate based on a numerical experiment.The mean value is estimated on an average over N trials

I ≃∑N

i=1 f (η1, . . . , ηn)

N, which is exact for N → ∞

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 10 / 41

Page 11: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Consider n-dimensional integral

I =

∫ 1

0· · ·

∫ 1

0f (x1, . . . , xn) dnx ,

in n-cube of unit volume. It is the mean value

I = 〈f 〉.

MC gives us an approximation of exact value of the mean value withstatistic estimate based on a numerical experiment.The mean value is estimated on an average over N trials

I ≃∑N

i=1 f (η1, . . . , ηn)

N, which is exact for N → ∞

But why random numbers?

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 11 / 41

Page 12: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Consider n-dimensional integral

I =

∫ 1

0· · ·

∫ 1

0f (x1, . . . , xn) dnx ,

in n-cube of unit volume. It is the mean value

I = 〈f 〉.

MC gives us an approximation of exact value of the mean value withstatistic estimate based on a numerical experiment.The mean value is estimated on an average over N trials

I ≃∑N

i=1 f (η1, . . . , ηn)

N, which is exact for N → ∞

Because a finite distribution of regular pointsgives a poor resolution whent the dimension n is high.

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 12 / 41

Page 13: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Propagation method

• Problem to be solved:⊲ determination of distribution function f of charged particles

based on the initial condition f0.⊲ Initial condition is a sum of mathematical particles (δ-functions)

which are propagated in time and space to represent a solutionat later times

• Consider N simulated superparticles, these representNreal real particles

w =Nreal

Nweight of superparticles

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 13 / 41

Page 14: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Propagation method

• Problem to be solved:⊲ determination of distribution function f of charged particles

based on the initial condition f0.⊲ Initial condition is a sum of mathematical particles (δ-functions)

which are propagated in time and space to represent a solutionat later times

• Consider N simulated superparticles, these representNreal real particles

w =Nreal

Nweight of superparticles

How to determine the density and the energy distribution function?

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 14 / 41

Page 15: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

• Estimation of particle density in a given cellof the mathematical mesh

n =Ncellw

∆x∆y∆z

• Determination of energy distribution functionby introducing a mash on the kinetic energy axis

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 15 / 41

Page 16: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

How to propagate particles?

• performing a numerical solution of equations of motionunder the effect of Lorentz force and random force whichrepresents collision events between charged particlesand neutral particles background

drdt

= v

dvt

=qm

E +Fcoll

m

• collision events are instantaneous, successions of “kicks”

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 16 / 41

Page 17: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

How to propagate particles?

• performing a numerical solution of equations of motionunder the effect of Lorentz force and random force whichrepresents collision events between charged particlesand neutral particles background

drdt

= v

dvt

=qm

E +Fcoll

m

• collision events are instantaneous, successions of “kicks”

How are collision times, tc, distributed?

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 17 / 41

Page 18: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

How to propagate particles?

• performing a numerical solution of equations of motionunder the effect of Lorentz force and random force whichrepresents collision events between charged particlesand neutral particles background

drdt

= v

dvt

=qm

E +Fcoll

m

• collision events are instantaneous, successions of “kicks”

How are collision times, tc, distributed?The answer is simple for constant collision frequency!

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 18 / 41

Page 19: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Distribution of collision times• for constant collision frequency α

P(tc) = α exp(−αtc)

• free flight time can be generated easily

tc = −ln η

α.

• Implementation of propagation:⊲ ∀ particle collisionless equation of motion

between (t , t + tc) is solved

drdt

= v

dvt

=qm

E

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 19 / 41

Page 20: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Distribution of collision times• for constant collision frequency α

P(tc) = α exp(−αtc)

• free flight time can be generated easily

tc = −ln η

α.

• Implementation of propagation:⊲ ∀ particle collisionless equation of motion

between (t , t + tc) is solved

drdt

= v

dvt

=qm

E

And . . .

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 20 / 41

Page 21: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Distribution of collision times• for constant collision frequency α

P(tc) = α exp(−αtc)

• free flight time can be generated easily

tc = −ln η

α.

• Implementation of propagation:⊲ ∀ particle collisionless equation of motion

between (t , t + tc) is solved

drdt

= v

dvt

=qm

E

• the collision is introduced by laws of physics,based on appropriate random distribution of impact parameters

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 21 / 41

Page 22: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

But . . .

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 22 / 41

Page 23: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Collision frequency is not a constant!

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 23 / 41

Page 24: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Null collision technique

• A new collision frequency is introduced

αmax = maxr ,v≤w

α(v , r ).

α(v , r ) =∑

p

n(r)vσp(v)

• α(v , r ) is a sum of all contributions from differentcollision processes “p”

• A new “null” collision process is added in orderto equate α(v , r ) and αmax

• Non-physical collisions are eliminated by considering“null” collision with probability

1 − α(v , r )/αmax

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 24 / 41

Page 25: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Null collision technique

• selection of an event with a probability p:

Uniform η ∈ (0, 1] : (p > η ? accepted : rejected)

• after the collision a new direction of velocityand its magnitude is determined

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 25 / 41

Page 26: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Null collision technique

• Isotropic scattering can be assumed in many cases,momentum transfer cross section is used insted of DCS.

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 26 / 41

Page 27: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Null collision technique

• Isotropic scattering can be assumed in many cases,momentum transfer cross section is used insted of DCS.

Is the Monte Carlo technique merely a solutionon the bases of physical analogy?

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 27 / 41

Page 28: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Formal view of Monte Carlo technique

• Consider linear Boltzmann equation in the form

dfdt

= −αmaxf + αmaxAf

A is a linear combination of unit operatorand a Boltzmann collision operator

• The integral form:

f (t) = exp(−αmaxt) + αmax

∫ t

0exp(−αmaxτ)A(τ) f (τ) dτ

• Monte carlo method can be derived from numerical solution ofthis equation. MC proceure is applied to calculate this integral.

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 28 / 41

Page 29: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Solving the BE by solving it

• Approximations:

⊲ spatialy homogeneous

⊲ electrons collide with neutral gas particles

⊲ collisions are isotropic

⊲ ionization is taken to be conservative

⊲ gas particles at rest

• The Boltzmann equation solved by the expansioninto the Legendre polynomials

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 29 / 41

Page 30: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Expansion of the BE into the LPs

• E ‖ z-axis =⇒ f (v , t) → f (v , θ, t) (rotational symmetry)

• BE has a form∂f∂t

+eEm

∂f∂vz

=∂f∂t

c

.

• Distribution function expanded into Legendre polynomials:

f (v , θ, t) =

∞∑

n=0

fn(v , t) Pn(cos θ).

∞∑

n=0

[

∂fn∂t

+eEm

(

n2n − 1

∂fn−1

∂v+

n + 12n + 3

∂fn+1

∂v+

+(n + 2)(n + 1)

2n + 3fn+1

v−

n(n − 1)

2n − 1fn−1

v

)]

Pn(cos θ) =∂f∂t

c

.

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 30 / 41

Page 31: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Expansion of BE into LPs

• Resulting hierarchy of PDEs

∂fn(v , t)∂t

=

−n

2n − 1

»

−eE(t)

mvn−1 ∂

∂v

fn−1(v , t)vn−1

«–

−n + 1

2n + 3

»

−eE(t)

m1

vn+2

∂v

`

vn+2fn+1(v , t)´

+

+ vN(t)`

Qn(v) − Q0(v)´

fn(v , t) +

+mM

1v2

∂v

h

v4N(t)`

Q1n(v) − Qn(v)´

fn(v , t)i

+

+X

k

»

(v kA)2

vN(t)Qk

n (v kA)fn(v k

A , t) −

− vN(t)Qk0 (v)fn(v , t)

,

n ≥ 0, f−1 ≡ 0,

where . . .

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 31 / 41

Page 32: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

. . . where

Qn(v) =

Z 2π

0dφ

Z

π

el(v , θ)Pn(cos θ) sin θ dθ,

Q1n(v) =

Z 2π

0dφ

Z

π

el(v , θ)P1(cos θ)Pn(cos θ) sin θ dθ,

Qkn (v) =

Z 2π

0dφ

Z

π

k(v , θ)Pn(cos θ) sin θ dθ,

where σel(v) σk (v) are differential collision cross sections for elastic and k-th inelasticcollision process and

v kA =

v2 +2Ak

m

«

, Ak> 0

Ak is excitation energy of k-th state.

• For numerical solution kinetic energy U used instead ofvelocity v :

U = (v/γ)2, γ = (2/m)1/2.

• Isotropic scattering (introducing mt)

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 32 / 41

Page 33: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Different approximations of the expansion of BE

• Two-term approximations:⊲ conventional two-term approx.

∂f1/∂t ≡ 0, f1(U, t) ∼ E(t)∂f0(U, t)/∂Uyou cannot choose f1(U, 0)!

⊲ strict time-dependent two-term approx.f2(U, t) ≡ 0

• Multi-term approximation:Expansion truncated after arbitrary (> 2) number of terms

• Effective field approximation (2-term):E(t) = E0 exp jωtTime variation f0 a f1 “slow enough” compared to ω.Generally: ω/2π ∼ GHz or higher

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 33 / 41

Page 34: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Solution procedure

• Hierarchy of PDEs solved as a initial–boundary value problem∂f0∂U

U=0= 0, fn(U = 0, t) = 0, n ≥ 1

fn(U ≥ U∞, t) = 0, n ≥ 0,

U∞ sufficiently large energy,

by the method of lines⊲ BE discretized in energy space on uniform mesh U ∈ (0, U∞)⊲ system of ODEs received⊲ ODEs integrated by Runge Kutta method of order 4(5)

with step-size control

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 34 / 41

Page 35: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Case study: Reid ramp model

Reid ramp model : Classical benchmark problem for solvers of BE,(Reid I. D., 1979, Aust. J. Phys. 32 p 231)

• Hypothetical gas⊲ mass: 4 amu⊲ cross section for elastic collisions

σel = 6.0 × 10−20 m2

⊲ cross section for inelastic collisions

σin =

{

0 ε ≤ 0.2 eV10(ε − 0.2) × 10−20 m2 ε > 0.2 eV

• All collisions assumed to be isotropic

• Thermal motion of gas particles neglected

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 35 / 41

Page 36: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Reid ramp model: results

• Time independent electric field

• Initial distribution of electrons: Maxwellian 300 K.

• Steady state for E/N = 24 Td (1 Td = 10−21 V m−1)

BE MC Reid Ness

Drift velocity (104 m s−1) 8.892 8.88 8.89 8.886

Mean energy (eV) 0.4079 0.408 0.413 –

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 36 / 41

Page 37: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Reid ramp model : E/N = 24 Td, 1 Torr

0.0

5.0

10.0

15.0

20.0v d

[104 m

/s]

BEMC

0.00

0.10

0.20

0.30

0.40

0.50

10-9 10-8

ε [e

V]

time [s]

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 37 / 41

Page 38: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Rare gases and the effect of ‘negative mobility’

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 0

5

10

15

20

f n

Q(ε

) [1

0-20 m

2 ]

energy [eV]

f0initial

f0final

Qel

Argon

-0.5

0.0

0.5

1.0

10-11 10-10 10-9 10-8 10-7 10-6 10-5 5.1

5.2

5.3

5.4

5.5

5.6

v d (

104 m

/s)

ε (e

V)

time (s)

vd

ε

Argon:

• initial distribution: Gaussian, center 5.5 eV, width 1 eV

• gas density 3.45 × 1022 m−3 (pressure 1 Torr, temperature 273 K)E = 2 kV m−1, E/N = 58 Td.

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 38 / 41

Page 39: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Rare gases and the effect of ‘negative mobility’

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

0 5 10 15 20 25

ε1/2

f0/n

e

[eV

-1],

f1|/n

e

[eV

-1/2

]

co

ll. c

ross s

ectio

n [

a.u

.]

ε [eV]

7.07×10-10

s f0f1 > 0

f1 < 0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

10-11 10-10 10-9 10-8 10-7 0

2

4

6

8

10

12

14

16

v d (

104 m

/s)

ε (e

V)

time (s)

vdε

Xenon:

• initial distribution: Gaussian, center 15.0 eV, width 1 eV

• gas density 3.45 × 1022 m−3 (pressure 1 Torr, temperature 273 K)E = 2 kV m−1, E/N = 58 Td

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 39 / 41

Page 40: Solution of time-dependent Boltzmann equation for electrons …stelweb.asu.cas.cz/~kor/seminar/bonaventura/zbona_on… ·  · 2007-10-18Solution of time-dependent Boltzmann equation

Conclusions

For a solution of time-dependent Boltzmann equation

� the Monte Carlo Method : is easy to implement, ratherstraightforward method, even for complex boundary conditions,may be rather time consuming

� Solution of the Equation : is a challenge, it is a fun, it gives goodresults (multi-term), for many problems it is impossible

Z. Bonaventura (UFE, F.Sci. MUNI) Simulation of Boltzmann equation Ondrejov, 18. 10. 2007 40 / 41