Solid State NMR of Glass - Modelling NMR spectra of glass ... · PDF fileSolid State NMR of...
date post
05-May-2018Category
Documents
view
218download
1
Embed Size (px)
Transcript of Solid State NMR of Glass - Modelling NMR spectra of glass ... · PDF fileSolid State NMR of...
Solid State NMR of GlassModelling NMR spectra of glass from first-principles
Thibault Charpentier
CEA / IRAMIS / SIS2MLaboratoire de Structure et Dynamique par Resonance Magnetique
GDR Verre, 9-13 April 2011
Introduction
Basics of NMR: Interactions, MAS, MQMAS
NMR of disordered Materials
NMR from first-principles
Molecular Dynamics versus NMRContent of the tutorial
I Basics of NMR interactions and spectra of solids
I 1D-2D NMR experiments: Static, MAS and MQMAS spectra
I NMR of disordered Materials
I Structure: Molecular Dynamics Simulations (TD)
I NMR parameters: DFT GIPAW calculations (TD)
I NMR parameters & Simulations: specific NMR softwarepackages (fpNMR) (TD)
I Principles of pulsed NMR
I NMR Hamiltonian Art . . .
The Zeeman Interaction and Larmor FrequencyThe NMR spectrum of an isolated nucleus . . .
m 1
0
0
I=32
B00
B0=0
m=3/2
m=1/2
m=1/2
m=3/2 0
The Zeeman effect
0
E=NB0
0=N2
B0
The Larmor frequency and its NMRspectrum.
No information on the chemical surrounding
(~) H = ~N~I ~B0
NMR and the Periodic TableOne-half and quadrupolar nuclei
I Isotope, Nuclear Spin
I Natural Abundance
I Gyromagnetic ratio (rad/s/T)0 = 20 = B0
I Quadrupolar MomentQ (see Pyykko)
Pulsed NMRThe Basic NMR Experiment . . . One pulse !
M0: Nuclear Magnetization at Equilibrium
s s-msms-h
p
B0 M0 M0
BRF
M0
FFT
S t
S
~M(0) = M0~z~M(p) = M0~x
S(t) = M0ei0te
tT2
S() =
0
dt S(t)ei2t N1k=0
S(tk)ei2tk = L ( 0)
Lineshape L(): Gaussian, Lorentzian . . .
Pulsed NMRThe Basic NMR Experiment: Fourier Transform
0 5000 10000 15000Time (s)
-50-40-30-20-1001020304050Chemical shift ( ppm )
23Na in Na2MoO4
S(t) S()
NMR Interactions for NMR spectroscopistsEffects of the local magnetic fields . . .
Electrons
Phonons
Nuclear Spins I Nuclear Spins SNMRNMR
EPR
MicroWaves, ....
Bloc
B0 BRF
0
E=N{B0Bloc }
loc
The NMR spectrum
Information on the chemical surrounding
(~) H = ~N~I {
~B0 + ~Bloc}
= HZ + Hinter.
(~) H = HZ + HCS + HQ + HJ + HD + . . .
CS: Chemical Shift, Q: Quadrupolar, J: J couplings, D: Dipolar
NMR interactions for Quantum ChemistsThe effective Hamiltonian
HS(NMR) = ~
i
i~Ii (1 ) ~B0 +
i ,|Ii |1
~IiQii~Ii
+~2
2
i
j 6=i
ij~Ii (Dij + Jij)~Ij
~B0 External static magnetic field
~BRF (t) External radiofrequency magnetic field (NMR signal)
Internal Interactions
~Ii Nuclear spin operators ~i = i~~Ii Nuclear magnetic shielding tensor (chemical shift)
Dij Nuclear magnetic dipolar coupling tensor (structure)
Jij Indirect nuclear spin-spin coupling tensor
Qii Nuclear quadrupolar coupling tensor ( |Ii | 1 )
The nature of NMR interactionsSecond-rank tensors (i.e. matrices) define NMR interactions.
~B(A)loc = A
~X =
Axx Axy Axz
Ayx Ayy Ayz
Azx Azy Azz
Xx
Xy
Xz
HA = N~~I A ~X
A ~X Interaction
1 ~B0,~BRF Zeeman interaction
~B0 Magnetic Shielding DFT
Q ~I Quadrupolar interaction DFT
D ~S Dipolar interaction (spatial) structure
J ~S Indirect J couplings (through bond) DFT
DFT calculations output A in its tensorial (matrix) form relative to a
reference frame(x , y , z) (crystal axes).
NMR Interactions: The Principal Axes System (PAS) IThe principal values
AZZ
AYYAXX
B0B0
z
x
y
A =
AXX 0 0
0 AYY 0
0 0 AZZ
Isotropic Aiso =
13Tr [A]
Anisotropy A = AZZ AisoAsymmetry A = (AXX AYY ) /A
with 0 A 1
Calculations output the tensor in a reference frame (unit-cell definition).Its diagonalization (3D rotation) provides the principal values (A,) and
its orientation with respect to the reference frame.Convention: |AZZ Aiso | |AXX Aiso | |AYY Aiso |
AisoAZZ AYY AXX
NMR Interactions are Anisotropic . . .. . . NMR spectra of a single molecule (crystal)
O
C
O
C
O
C
zz yy xx
B0 B0 B0
The NMR frequency depends on the orientation with respect to ~B0 0 = int()
Single crystal NMR exists . . . but amorphous materials ?
NMR Interactions: The Principal Axes System (PAS) IIThe relative orientation of the PAS
APAS = Aiso1
+ A
12 (1 + A) 0 0
0 12 (1 A) 0
0 0 1
A = X1A APASXA
XA = R(A, A, A)
= exp(iAIz) exp(iAIy ) exp(iAIz)
(x , y , z): reference frame axis(A, A, A): Euler angles
A NMR interaction is characterized by 6 parameters:Aiso , A, A, A, A, A.
For a single interaction, (A, A, A) does not affect the powderlineshape but can be determined for single crystal NMR.
NMR Interactions are Anisotropic . . .. . . NMR spectrum (CSA) of a powder
B0
x
y
z
,
=90 =0
The powder average
S(t) =
sin dd
exp {i(, )t}
NMR Interactions are Anisotropic . . .. . . but in liquids only the isotropic part in effective
Motional averaging
I Motions affect the anisotropiclineshape.
I In the case of fast motionalaveraging (vs Larmorfrequency), a narrow line at theisotropic frequency.
I Brownian Motion in liquid
I Motions (fluctuations) induce
Relaxation
H ((t)) = Hiso + Hani ((t)) withHani ((t)) = 0 at the Larmor time scale ( 1/0)
The Zeeman Truncation in High Field NMROnly the part along B0 is NMR active to first order.
AZZ
AYYAXX
B0B0
z
x
y
Azz
In case of 1-spin interaction,only Azz (in the referenceframe) contributes to firstorder to the NMR frequency.
Because B0 Bloc (or HZ Hint), wehave the secular approximation
Hint H(1)CS + H(1)Q + H
(2)Q + H
(1)J + H
(1)D . . .
Typical strength of NMR interactionsI Z: 10-1000 MHz
I CS: kHz
I Q: MHz (up to second order)
I D: kHz
I J: Hz
NMR Interactions in generalAn overview . . .
H () = C () R () () T()
C () Constant Obtained from DFT (,Q)
R() () Spatial Dependence Manipulated through (sample) motions
R() () = 1 Isotropic Brownian motions in liquids
T() Spin operators Manipulated through RF (spin rotation)
T() Iz Chemical shift
T(Q) I 2z First order quadrupolar interaction
T(Q) Iz , I 3z Second order quadrupolar interaction
T(D,J) IzSz Dipolar (heteronuclear) or J interactions
T(D)II
IAz IBz
Dipolar (homonuclear) interaction+ 14
(IA+ I
B + I
AI
B+
)
The Shielding / Chemical Shift TensorNMR frequency
The secular contribution of the magnetic shielding is:
HCS = ~I~B0 B0zz()Iz
zz() = XX sin2 cos2 + YY sin
2 sin2 + ZZ cos2
= iso +CS2
((3 cos2 1) + CS sin2 cos 2
)= iso + CSR20()
NMR measure the chemical shift tensor (ppm):
expiso (ppm) = 106
( ref
ref
)ref is a frequency reference value obtained from one tabulated
reference compound, generally in liquid or in a solid (narrow peak,e.g. NaCl for 23Na.
The shielding / Chemical Shift TensorNMR static lineshape
-200 -100 0 100 200ppm
-200 -100 0 100 200ppm
CSA > 0 CSA < 0
= 0
= 0.5
= 1
The magnetic shieldingRelationshield with the chemical environment
-120-110-100-90-80-70-6029Si chemical shift iso (ppm)
O-O-SiO- O-
O-SiOSiO- O-
O-SiOSiOSi O-
Si OSiOSiOSi O-
Si OSiOSiOSi O Si
Q(0) Q(1) Q(2) Q(3) Q(4)
Q(1) SiOSi=180oQ(0)
Q(1)
Q(2)
Q(3)
Q(4)
Tetrahedral silicon Q(n) units in silicates
The quadrupolar interactionfrom electric field gradient. Only for I 1.
Because of its large strength (kHz-MHz), quadrupolar Hamiltonianare often accounted for up to second order (23Na,17O,27Al,11B. . . )
depending on the local environment of the nucleus.
The electric field gradient V is a symmetric traceless(VXX + VYY + VZZ = 0) tensor.
CQ =eQ
hVZZ , Q =
VXX VYYVZZ
,Viso = 0
CQ : quadrupolar couping constant, Q : quadrupolar asymmetryparameter.
The quadrupolar interactionTo first order. Only for I 1.
The firt-order secular quadrupolar Hamiltonian is
H(1)Q =
CQ6I (2I 1)
R20 () T20 , T20 =
1
6
(3I 2z I (I + 1)
)This I 2z yields the NMR frequency as
m,m1 0 =1 2m
2QR20 () =
(1)Q ()
The central transition 12 12 is not affected by H
(1)Q .
0Q1
20
Q1
2
I=1
0
0Q
10Q1
I=32
The quadrupolar interactionTo second order.
The second-order secular quadrupolar Hamiltonian is (morecomplex)
H(2)Q =
1
0
(CQ
6I (2I 1)
)2
l=0,2,4
AlRl0()
Rl0() =lk=l
Bkl ()Dkl0 () ,D
kl0 : Wigner rotation matrix elements
Al = f (I 3z , Iz) and isotropic shift (SOQS) (2)Q = A
0B00 ()
The NMR frequency of the central transition can be written as
1/2,+1/2() 0 = a0 + a2R20() + a4R40()
The quadrupolar interactionfrom electric field gradient
-2000-1000010002000kHz
-200-