Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

48
Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias

Transcript of Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Page 1: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Small-scale solar surface fields

M. J. Martínez González

Instituto de Astrofísica de Canarias

Page 2: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

The multi-scale magnetic Sun

Active regionsφ ≈ 103 GB ≈ 103 G

D ≈ 105 km

Networkφ ≈ 102 GB ≈ 103 G

D ≈ 104 km

Very quiet Sunφ ≈ 10 GB ≤ 102 G

D ≤ 103 km

Quiet Sun

Page 3: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Which is the origin of very quiet Sun magnetic fields ?

Statistical physical properties

Study of the newly appeared magnetic fields into the very quiet photosphere

Page 4: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Statistical physical properties

Page 5: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

The very quiet Sun is alike everywhere

(magnetic field vector ≈ isotropic)

Orozco Suárez & Katsukawa 2012, ApJ, 746, 182

Hinode data at 630 nm

See also Lites et al. 2008, ApJ, 672, 1237

Martínez González et al. 2008, A&A, 479, 229

TIP@VTT data at 1.5 μm

Page 6: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Field strengths of the order of equipartition or below

Modeling polarimetric signals with a uniformfield, it would occupy only 2% of the resolution element.

Khomenko et al. (2003), Martínez González et al. (2008), Orozco Suárez et al. (2008)

Page 7: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Uniform magnetic field

There is evidence of unresolved structures in the (3D) resolution element.

Magnetic scales possibly continue below ~ 100 km

Page 8: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Observing the Sun at different spatial resolutions tells us about the

organisation of the magnetic fields.

(correlations between adjacent pixels).

Blong A/Apixel<Blong>=0(Blong) (A/Apixel)1/2

“flux tube” “isotropic random field”

Page 9: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

The smallest the polarimetric signal, the smallest the spatial coherence

Martínez González et al. 2010, ApJ, 711, 57L

See also Stenflo 2010, A&A, 517, 37Sánchez Almeida & Martínez González 2011, ASP, 437

scales well below 200 km

Page 10: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

The smallest the polarimetric signal, the smallest the spatial coherence

Martínez González et al. 2010, ApJ, 711, 57L

See also Stenflo 2010, A&A, 517, 37Sánchez Almeida & Martínez González 2011, ASP, 437

scales well below 200 km

Page 11: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

…and even down to ~100 km (best present spatial resolution)

Extended tails are

indicators of intermittency

Page 12: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Newly emerged flux in the quiet photosphere, appears in form of intermittent, small-scale Ω-loops.

Martínez González, M. J. 2006 , PhD thesis

Martínez González et al. 2007 , A&A, 469, L39

Blinear pol.

circular pol. (+, -)

obse

rver

Page 13: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Study of newly emerged flux

Topology, physical properties (study of individual phenomena) Statistics Spatial distribution

Page 14: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Study of newly emerged flux

Topology, physical properties (study of individual phenomena) Statistics Spatial distribution

Page 15: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Ishikawa et al. 2010, ApJ, 713, 1310

Flux-tube like structures

Page 16: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Turbulence is not large enough to remove the coherency but a “flux tube” model seems to be toosimplistic for some of these loops.

Ressemble the more extended loopsof granular flux emergence in active regions

Martínez González et al. 2010, ApJ, 714, 94

Ortiz et al. 2014, ApJ, 781, 126

See also Vargas Domínguez et al. 2012, SoPh, 278, 99

Page 17: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Quiet Sun loops are not low-lying, they ascend through the atmosphere

Line

form

ation

regi

on

t=30 s

1) the apex (linear pol.)

2) the footpoints (circular pol.) separate and intensificate (the field becomes more vertical)

2000 km

Martínez González & Bellot Rubio 2009, ApJ, 700, 1391

Page 18: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Gömöry et al. 2010, A&A, 511, 14

Page 19: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

1 h

The magnetic loops appear in “emergence centres”.

In general, they emerge in the granules and travel to the closest intergranular lane (they never cross another granule).

Centeno et al. 2007, ApJ, 666, 137

Page 20: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

23 % of the detected small-scale loops cross the Mg b I formation region (minimum temperature region) and reach the lower chromosphere (brightenings in Ca II).

t=0 s

We first detect the linear polarisation above a granule, the footpoints being under the noise level.

Photospheric Photospheric Minimum T Lower granulation magnetogram magnetogram chromosphere (CN) (630 nm) (Mg b I) (Ca II)

Page 21: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

t=60 s

The footpoints appear very close to the linear polarisation patch. Now the loop is completely formed.

Photospheric Photospheric Minimum T Lower granulation magnetogram magnetogram chromosphere (CN) (630 nm) (Mg b I) (Ca II)

23 % of the detected small-scale loops cross the Mg b I formation region (minimum temperature region) and reach the lower chromosphere (brightenings in Ca II).

Page 22: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

t=120 s

Photospheric Photospheric Minimum T Lower granulation magnetogram magnetogram chromosphere (CN) (630 nm) (Mg b I) (Ca II)

The footpoints separate. We see upflows in the magnetic LOS velocity maps.

23 % of the detected small-scale loops cross the Mg b I formation region (minimum temperature region) and reach the lower chromosphere (brightenings in Ca II).

Page 23: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

t=150 s

Photospheric Photospheric Minimum T Lower granulation magnetogram magnetogram chromosphere (CN) (630 nm) (Mg b I) (Ca II)

Between t=150 and t=180 s, the linear polarisation disappears below the noise.

23 % of the detected small-scale loops cross the Mg b I formation region (minimum temperature region) and reach the lower chromosphere (brightenings in Ca II).

Page 24: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

t=150 s

Photospheric Photospheric Minimum T Lower granulation magnetogram magnetogram chromosphere (CN) (630 nm) (Mg b I) (Ca II)

Between t=150 and t=180 s, the linear polarisation disappears below the noise.

23 % of the detected small-scale loops cross the Mg b I formation region (minimum temperature region) and reach the lower chromosphere (brightenings in Ca II).

Similar to granular fluxemergence in active regions

Orti

z et

al.

2014

, ApJ

, 781

, 126

Page 25: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

t=180 s

Photospheric Photospheric Minimum T Lower granulation magnetogram magnetogram chromosphere (CN) (630 nm) (Mg b I) (Ca II)

The positive footpoint has been drifted to an intergranular lane and is more concentrated whereas the negative one is still rooted in the granule and is more diffuse.

23 % of the detected small-scale loops cross the Mg b I formation region (minimum temperature region) and reach the lower chromosphere (brightenings in Ca II).

Page 26: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

t=270 s

Photospheric Photospheric Minimum T Lower granulation magnetogram magnetogram chromosphere (CN) (630 nm) (Mg b I) (Ca II)

We observe weak polarisation signals in the Mg magnetogram that are cospatial with the photospheric footpoints. We also see downflows in the Mg dopplergram (~-0.4 km/s) in the position of the positive footpoint (loop has to get rid of its matter to rise into a less dense medium).

23 % of the detected small-scale loops cross the Mg b I formation region (minimum temperature region) and reach the lower chromosphere (brightenings in Ca II).

Page 27: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

t=570 s

Photospheric Photospheric Minimum T Lower granulation magnetogram magnetogram chromosphere (CN) (630 nm) (Mg b I) (Ca II)

The Mg signals are now much more intense and correspond to both footpoints rooted in intergranular lanes.

23 % of the detected small-scale loops cross the Mg b I formation region (minimum temperature region) and reach the lower chromosphere (brightenings in Ca II).

Page 28: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

t=720 s

Photospheric Photospheric Minimum T Lower granulation magnetogram magnetogram chromosphere (CN) (630 nm) (Mg b I) (Ca II)

The footpoints are clear in the Mg magnetogram and dopplergram and we start seeing a brightening in the Ca II image corresponding to the positive footpoint.

23 % of the detected small-scale loops cross the Mg b I formation region (minimum temperature region) and reach the lower chromosphere (brightenings in Ca II).

Page 29: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

t=780 s

Photospheric Photospheric Minimum T Lower granulation magnetogram magnetogram chromosphere (CN) (630 nm) (Mg b I) (Ca II)

We clearly see bright points in the Ca II intensity map, meaning that the loop has reached the chromosphere. Moreover we see bright points in the CN molecular band.

23 % of the detected small-scale loops cross the Mg b I formation region (minimum temperature region) and reach the lower chromosphere (brightenings in Ca II).

Page 30: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

t=900 s

Photospheric Photospheric Minimum T Lower granulation magnetogram magnetogram chromosphere (CN) (630 nm) (Mg b I) (Ca II)

23 % of the detected small-scale loops cross the Mg b I formation region (minimum temperature region) and reach the lower chromosphere (brightenings in Ca II).

Page 31: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

t=1020 s

Photospheric Photospheric Minimum T Lower granulation magnetogram magnetogram chromosphere (CN) (630 nm) (Mg b I) (Ca II)

The Ca/CN brightenings disappear.

The positive footpoint will disappear but the polarisation features of the negative one will survive thanks to the interaction with a strong polarisation patch.

23 % of the detected small-scale loops cross the Mg b I formation region (minimum temperature region) and reach the lower chromosphere (brightenings in Ca II).

Page 32: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Still not constrained byobservations.

The loops transportat least 2 107 erg cm-2 s-1

(106-107 erg cm-2 s-1 rad. losses)

(for simplicity, only one magnetic field line represented)

Martínez González et al. 2010, ApJ, 714, 94

Page 33: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Gömöry et al. 2013, A&A, 556, 7

Imprints on the chromosphere

Page 34: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Study of newly emerged flux

Topology, physical properties (study of individual phenomena) Statistics Spatial distribution

Page 35: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Martínez González et al. 2012, ApJ, 755, 175

97% Ω-shaped loops rising through the atmosphere.

Some few loops are complex (extended feet, sea-serpent like).

Only 3% of the linear polarization appears after the loop had already disappeared. (a loop that emerges and then submerges in the photosphere, or a “magnetic bubble,” i.e., a circle of magnetic field lines).

Page 36: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Martínez González & Bellot Rubio 2009, ApJ, 700, 1391

Complicated wandering of their footpointsDo not follow Hale’s polarity law.

Page 37: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Manso Sainz et al. 2011, A&A, 531, 9

Within granules loops are passively advected by the plasma, which is roughly laminar with a characteristic mean velocity of 2 km/s .

In intergranular lanes, they remain there and are buffeted by the random flows of neighbouring granules and turbulent intergranules, following random walks, and disperse across the solar surface with a diffusion constant of 195 km2/s.

ta a = 1.7 ta a = 0.97

Page 38: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Quiet Sun loops are at the tail of thedistribution of newphotospheric flux

Parnell et al. 2009, ApJ, 698, 75

−1.85 ± 0.14

Page 39: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Do they continue to smaller scales ?

Loops as small as the spatial resolution limit

Page 40: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Orozco Suárez et al. 2008, A&A, 481, 33

Possibly YES

Page 41: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Study of newly emerged flux

Topology, physical properties (study of individual phenomena) Statistics Spatial distribution

Page 42: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Martínez González et al. 2012, ApJ, 755, 175

Page 43: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Distribution of voids (dead calm areas in the very quiet Sun)

Page 44: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Stangalini 2014, A&A, 561, 6

Dead calm areas possibly related to supergranulation

Page 45: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

… quiet Sun, why should we care?

… because it is most of the Sun, most of the time.

Page 46: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Daily emergence

71020 – 61021 Mx

Emergencerate:0.02 loops arcsec-2 h-1

Martínez González & Bellot Rubio (2009)

Emergence rate:0.2 loops arcsec-2 h-1

Martínez González et al. (2011)

Quiet Sun loops 1025 Mx 1016-1017 Mx, t~min-hours

…as compared to..

Large active regions sunspots, >1021 Mx, t~weeks-months

Small active regions pores, 1020-1021 Mx, t~days-weeks

Ephemeral active regions 3-6 1022 – 5 1023 Mx1018-1020 Mx, t~hours-days

7 1020 – 6 1021 Mx

Page 47: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

… quiet Sun, why should we care?

Although fields are weak, its magnetic flux content is larger than that of active regions.

It seems a rather stochastic magnetism but intermittent -shaped loops connect the quiet photosphere with upper layers, carrying at least 2 107 erg cm-2 s-1 to the base of the chromosphere.

Small-scale loops are the lowest fluxes of the power law extending over five decades of flux (Parnell et al. 2009).

They do not appear totally uniformly in the solar surface (voids and clumps).

Are quiet Sun fields of the same origin than active regions?

They have similarities but, e.g., the quiet Sun occupies the full Sun and does not follow the activity cycle.

Could they be created by different mechanisms but all are dominated by surface processes ?

Page 48: Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.

Thank you !