Significant scales in community structure
-
Upload
vincent-traag -
Category
Science
-
view
98 -
download
3
Embed Size (px)
description
Transcript of Significant scales in community structure

Significant scales in community structure
V.A. Traag1,2, G. Krings3, P. Van Dooren4
1KITLV, Leiden, the Netherlands2e-Humanities, KNAW, Amsterdam, the Netherlands
3Real Impact, Brussels, Belgium,4UCL, Louvain-la-Neuve, Belgium
September 17, 2013
eRoyal Netherlands Academy of Arts and SciencesHumanities

Community Detection
Contant Potts Model (CPM)
• Minimize H(γ) = −∑ij(Aij − γ)δ(σi , σj)
• Resolution-limit-free
• Internal density pc > γ
• Density between pcd < γ

Community Detection
Contant Potts Model (CPM)
• Minimize H(γ) = −∑ij(Aij − γ)δ(σi , σj)
• Resolution-limit-free
• Internal density pc > γ
• Density between pcd < γ

Community Detection
Contant Potts Model (CPM)
• Minimize H(γ) = −∑ij(Aij − γ)δ(σi , σj) = −∑
c(ec − γn2c)
• Resolution-limit-free
• Internal density pc > γ
• Density between pcd < γ

Community Detection
Contant Potts Model (CPM)
• Minimize H(γ) = −∑ij(Aij − γ)δ(σi , σj) = −∑
c(ec − γn2c)
• Resolution-limit-free
• Internal density pc > γ
• Density between pcd < γ

Community Detection
Contant Potts Model (CPM)
• Minimize H(γ) = −∑ij(Aij − γ)δ(σi , σj) = −∑
c(ec − γn2c)
• Resolution-limit-free
• Internal density pc > γ
• Density between pcd < γ

Community Detection
Contant Potts Model (CPM)
• Minimize H(γ) = −∑ij(Aij − γ)δ(σi , σj) = −∑
c(ec − γn2c)
• Resolution-limit-free
• Internal density pc > γ
• Density between pcd < γ
How to choose γ?

Resolution profile
10−3 10−2 10−1 100103
104
105
106
γ
N E

Significance
How significant is a partition?

Significance
E = 14
E = 9
Fixed partition
E = 11
Better partition

Significance
E = 14
E = 9
Fixed partition
E = 11
Better partition
• Not: Probability to find E edges in partition.
• But: Probability to find partition with E edges.

Subgraph probability
Decompose partition
• Probability to find partition with E edges.
• Probability to find communities with ec edges.
• Asymptotic estimate
• Probability for subgraph of nc nodes with density pc
Pr(S(nc , pc) ⊆ G (n, p)) ≈ exp[−n2cD(pc ‖ p)
]
Significance
• Probability for all communities Pr(σ) ≈∏c
exp[−n2cD(pc ‖ p)
].
• Significance S(σ) = − log Pr(σ) =∑c
n2cD(pc ‖ p).

Subgraph probability
Decompose partition
• Probability to find partition with E edges.
• Probability to find communities with ec edges.
• Asymptotic estimate
• Probability for subgraph of nc nodes with density pc
Pr(S(nc , pc) ⊆ G (n, p)) ≈ exp[−n2cD(pc ‖ p)
]
Significance
• Probability for all communities Pr(σ) ≈∏c
exp[−n2cD(pc ‖ p)
].
• Significance S(σ) = − log Pr(σ) =∑c
n2cD(pc ‖ p).

Subgraph probability
Decompose partition
• Probability to find partition with E edges.
• Probability to find communities with ec edges.
• Asymptotic estimate
• Probability for subgraph of nc nodes with density pc
Pr(S(nc , pc) ⊆ G (n, p)) ≈ exp[−n2cD(pc ‖ p)
]
Significance
• Probability for all communities Pr(σ) ≈∏c
exp[−n2cD(pc ‖ p)
].
• Significance S(σ) = − log Pr(σ) =∑c
n2cD(pc ‖ p).

Subgraph probability
Decompose partition
• Probability to find partition with E edges.
• Probability to find communities with ec edges.
• Asymptotic estimate
• Probability for subgraph of nc nodes with density pc
Pr(S(nc , pc) ⊆ G (n, p)) ≈ exp[−n2cD(pc ‖ p)
]
Significance
• Probability for all communities Pr(σ) ≈∏c
exp[−n2cD(pc ‖ p)
].
• Significance S(σ) = − log Pr(σ) =∑c
n2cD(pc ‖ p).

Subgraph probability
Decompose partition
• Probability to find partition with E edges.
• Probability to find communities with ec edges.
• Asymptotic estimate
• Probability for subgraph of nc nodes with density pc
Pr(S(nc , pc) ⊆ G (n, p)) ≈ exp[−n2cD(pc ‖ p)
]
Significance
• Probability for all communities Pr(σ) ≈∏c
exp[−n2cD(pc ‖ p)
].
• Significance S(σ) = − log Pr(σ) =∑c
n2cD(pc ‖ p).

Subgraph probability
Decompose partition
• Probability to find partition with E edges.
• Probability to find communities with ec edges.
• Asymptotic estimate
• Probability for subgraph of nc nodes with density pc
Pr(S(nc , pc) ⊆ G (n, p)) ≈ exp[−n2cD(pc ‖ p)
]
Significance
• Probability for all communities Pr(σ) ≈∏c
exp[−n2cD(pc ‖ p)
].
• Significance S(σ) = − log Pr(σ) =∑c
n2cD(pc ‖ p).

Significance
10−3 10−2 10−1 100103
104
105
106
γ
N E

Significance
10−3 10−2 10−1 100103
104
105
106
γ
N E S

Benchmark
0.25
0.5
0.75
1
NM
In = 5000, Small
0
1S S∗
0 0.2 0.4 0.6 0.8 101
µ
S∗ 〈S〉
CPM+SigSignificanceModularity
InfomapOSLOM

Conclusions
• Scan γ efficiently.
• Significance applicable in all methods.
• Correct comparison to random graph.
Traag, Krings, Van Dooren Significant scales in Community StructurearXiv:1306.3398
Thank you!Questions?
e-mail: [email protected] twitter: @vtraag