# Shung-Ichi Ando Sunmoon University, Asan, …...Hypernuclei in halo/cluster EFT Shung-Ichi Ando...

### Transcript of Shung-Ichi Ando Sunmoon University, Asan, …...Hypernuclei in halo/cluster EFT Shung-Ichi Ando...

Hypernuclei in halo/cluster EFT

Shung-Ichi Ando

Sunmoon University, Asan, Republic of Korea

arXiv:1512.07674

31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 1

Outline

• Singular potentials:

Limit cycle and Efimov states in three-body systems

• 4ΛΛH as ΛΛd system in halo EFT

• 6ΛΛHe as ΛΛα system in cluster EFT

• Summary

31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 2

Limit cycle

• Three-body systems in unitary (asymptotic) limit

• If an interaction is singular, the system exhibitscyclic singularities, so called limit cycle.

• It is necessary to introduce a counter term forrenormalization.

• Efimov-like bound statesInfinitely many three-body bound states (whose

energies B(n)) appear, for three-boson case,

B(n) =(

e−2π/s0)n−n∗

κ2∗/m ,

where s0 ≃ 1.00624 and eπ/s0 ≃ 22.7.31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 3

Halo/Cluster EFT

• Effective Field Theories (EFTs)

• Model independent approach

• Separation scale

• Counting rules

• Parameters should be fixed by experiments

• For the study of three-body systems the unitarylimit can be chosen as a first approximation.

31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 4

4ΛΛ

H at LO

• ΛΛd

• 3ΛH, BΛ = 0.13 MeV

• d, B2 = 2.22 MeV

• S-waves are considered at LO.

• S = 0: no limit cycle, one parameter γΛd, and wefind no bound state for 4

ΛΛH and a0 = 16.0± 3.0 fm

for Λ-3ΛH scattering.

• S = 1: 4ΛΛH shows a limit cycle, three parameters,

aΛΛ, γΛd, g1(Λc), and the three-body interaction isfixed by using the results of the potential models.

31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 5

Two-body part: ΛΛ in 1S0 state

• Dressed dibaryon propagator

= + + + ...

• Renormalized dressed dibaryon propagator

Ds(p0, ~p) =4π

mΛy2s

1

1aΛΛ

−√

−mΛp0 + 14~p2 − iǫ

.

aΛΛ = −1.2± 0.6 fm ,

from 12C(K−,K+ΛΛX) reaction [Gasparyan et al., PRC85(2012)015204].

31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 6

Two-body part: Λd in 3ΛH channel

• Dressed 3ΛH propagator

= + + + ...

• Renormalized dressed 3ΛH propagator

Dt(p0, ~p) =2π

µΛdy2t

1

γΛd −√

−2µΛd

(

p0 − 12(mΛ+md)

~p2)

,

with

γΛd =√

2µΛdBΛ .

31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 7

Three-body part: S = 1 channel

= + + + +

= +

a(p, k;E) = K(a)(p, k;E)−g1(Λc)

Λ2c

−1

2π2

∫ Λc

0dll2

[

K(a)(p, l;E)−g1(Λc)

Λ2c

]

Dt

(

E −1

2mΛl2,~l

)

a(l, k;E)

−1

2π2

∫ Λc

0dll2K(b1)(p, l;E)Ds

(

E −1

2mdl2,~l

)

b(l, k;E) ,

b(p, k;E) = K(b2)(p, k;E)

−1

2π2

∫ Λc

0dll2K(b2)(p, l;E)Dt

(

E −1

2mΛl2,~l

)

a(l, k;E) ,

31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 8

where

K(a)(p, l;E) =mdy

2t

6plln

p2 + l2 + 2µΛd

md

− 2µΛdE

p2 + l2 − 2µΛd

md

− 2µΛdE

,

K(b1)(p, l;E) = −√

2

3

mΛysyt

2plln

(

p2 + mΛ

2µΛd

l2 + pl −mΛE

p2 + mΛ

2µΛd

l2 − pl −mΛE

)

,

K(b2)(p, l;E) = −√

2

3

mΛysyt

2plln

( mΛ

2µΛd

p2 + l2 + pl −mΛEmΛ

2µΛd

p2 + l2 − pl −mΛE

)

.

31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 9

Evaluation formula for the limit cycle

• In the asymmetric limit, there is no scale in the integral

equations. The scale invariance suggests that the

power-law behavior for the amplitude

a(p) ∼ p−1+s .

• After Mellin transformations we have

1 = C1I1(s) + C2I2(s)I3(s) .

• It has imaginary solutions for s, s = ±is0,

s0 = 0.4492 · · · ,

and thus eπ/s0 ≃ 1.09× 103.31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 10

• Evaluation formula for the limit cycle (for the ΛΛd system)

1 = C1I1(s) + C2I2(s)I3(s) ,

with

C1 =1

6π

md

µΛd

√

µΛ(Λd)

µΛd, C2 =

√2

3π2

√mΛµd(ΛΛ)µΛ(Λd)

µ3/2Λd

,

where µd(ΛΛ) = 2mΛmd/(2mΛ +md), and

I1(s) =2π

s

sin[s sin−1(

12a)

]

cos(

π2s) ,

I2(s) =2π

s

1

bs/2sin[s cot−1

(√4b− 1

)

]

cos(

π2s) ,

I3(s) =2π

sbs/2

sin[s cot−1(√

4b− 1)

]

cos(

π2s) ,

and a = 2µΛd

md

and b = mΛ

2µΛd

.31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 11

Numerical results: S = 1 channel

• With g1(Λc),

(BΛΛ, aΛΛ) = (I) (0.2 MeV, −0.5 fm), (II) (0.6, −1.5), (III) (1.0, −2.5).

-20

-15

-10

-5

0

5

10

15

20

101 102 103 104 105 106

g 1(Λ

c)

Λc (MeV)

(I)(II)(III)

31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 12

Numerical results: S = 1 channel

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 1.1 1.2

0.5 1 1.5 2 2.5 3 3.5

B ΛΛ

(M

eV)

-aΛΛ (fm)

Λc = 300 MeV= 150 MeV= 50 MeV

(II), (III)

31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 13

6ΛΛ

He at LO

• ΛΛα (S = 0)

• 5ΛHe, BΛ ≃ 3 MeV

• First excited energy of α, B1 ≃ 20 MeV

• The limit cycle appears, three parameters, aΛΛ,γΛα, g(Λc), at LO, and the three-body interaction isfixed by using the Nagara event, BΛΛ ≃ 6.93 MeV

31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 14

Numerical results:

• With g(Λc) (Input: BΛΛ =6.93MeV)

-10

-5

0

5

10

100 1000 10000 100000

g(Λ

c)

Λc (MeV)

aΛΛ = -1.8 fm = -1.2 fm = -0.6 fm

Λn = Λ0 exp(nπ/s0) , s0 ≃ 1.05 , exp(π/s0) ≃ 19.9 .

31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 15

Numerical results:

• Without g(Λc)

4

5

6

7

8

9

10

11

12

300 350 400 450 500 550 600 650

B ΛΛ

(M

eV)

Λc (MeV)

aΛΛ = - 1.8 fm = - 1.2 fm = - 0.6 fm

• rc = Λ−1 ≃ 0.35 to 0.5 fm.31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 16

Numerical results:

• With g(Λc) (Input: BΛΛ =6.93MeV, aΛΛ = −0.5fm)

5

6

7

8

9

10

11

12

13

14

-3 -2.5 -2 -1.5 -1 -0.5 0

B ΛΛ

(M

eV)

1/aΛΛ (fm-1)

Λc = 430 MeV = 300 MeV = 170 MeV

Potential models

[Filikhin and Gal, NPA707,491(2002)]31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 17

Summary

• Halo/cluster EFTs at LO for the light hypernucleiare constructed.

• Those three-body systems described by means ofEFTs at LO exhibit a limit cycle in the asymptoticlimit which implies the formation of bound states.

• For more conclusive results, we need to have theexp. data and include higher order corrections.

• We have applied the present approach to thestudy of nnΛ system [SIA, Raha, Oh, PRC92(2015)024325].

31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 18