Selective harmonic elimination in a solar powered multilevel inverter

download Selective harmonic elimination in a solar powered multilevel inverter

of 76

Embed Size (px)

Transcript of Selective harmonic elimination in a solar powered multilevel inverter

  • Harmonic Elimination in a Solar Powered Multilevel Inverter

    Dr. Shimi S.L

    Assistant Professor, EE

    NITTTR, Chandigarh

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 1

  • Global Solar Potential

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 2

  • (maximum efficiency)= P(maximum power output)/(E(S,)(incident radiation flux)*A(c)(Area of collector))

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 3

  • Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh12/4/2017 4

  • MAXIMUM POWER POINT TRACKING

    (MPPT)

    There are two basic approaches in maximizing the power extraction:

    (a) Using automatic sun tracker

    (b) Searching for the MPP conditions

    Perturb and Observe method

    Incremental Conductance method

    Artificial intelligence (AI) methods

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 5

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 6

  • The height of a projectile that is fired straight up is given by the motion equations

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 7

  • 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 8

  • 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 9

  • Partial Shading of Solar Panels

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 10

  • 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 11

  • 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 12

  • Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 12/4/2017 13

  • MPPT of a PV System

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 14

  • Switching Mode Regulator (Buck Converter)

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 15

  • Equivalent Circuit (a) Switch ON (b) Switch OFF

    = =(1 )

    2

    = =1

    162

    For a switching frequency of 80 KHz and inductance current ripple () of 10% the and are approximated as 1mH and 100F respectively

    =(1 )

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 16

  • Parameters of Buck Converter

    Sr. No. Parameter Value

    1 Inductor (L) 1mH

    2 Inductor series resistance (RL) 80 m

    3 Output capacitor (Co) 100 F

    4 Output capacitor ESR (Rco) 30 m

    5 Input capacitor (Ci) 100 F

    6 Input capacitor ESR (Rci) 30 m

    7 Switching frequency (fs), 80 KHz

    8 Input voltage 20 V

    9 Duty-ratio (D) Variable

    10 Load resistance 9 Ohm

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 17

  • MATLAB/SIMULINK Model of Buck Converter

    Components of PWM Block Subsystem

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh

    18

  • PWM with 0.5 Value of Duty-cycle

    Input and Output Voltages Waveforms of Buck Converter

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 19

  • PERFORMANCE EVALUATION OF

    VIKRAM SOLAR MODULE

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 20

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 21

  • Performance Characteristics Outdoor Efficiency 9.95%

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 22

  • Performance of 37W PV Module at Laboratory and Outdoor Conditions

    Co

    nd

    itio

    n

    Angle of PV

    Panel Tilt

    Irradiation

    W/m2

    Temperature

    oC

    Voc

    (V)

    Isc

    (mA)

    Vm

    (V)

    Im

    (mA)

    Pm

    (W)

    (%)

    Lab

    00 450 30 18.71 129 17.93 126 2.254 1.446

    450 450 30 18.99 255 17.96 183 3.291 2.111

    Ou

    tdo

    or 00 923 32 18.20 1071 14.33 1043 14.94 7.640

    450 923 32 19.07 1904 14.77 1777 26.26 11.25

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 23

  • 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 24

  • PCI Port

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 25

  • Specification of DS1104 R&D Controller BoardParameter Characteristics

    Processor MPC8240 processor with PPC603e core and on-chip

    peripherals

    64-bit floating-point processor

    250 MHz CPU

    2 x 16 KB cache; on-chip

    On-chip PCI bridge (33 MHz)

    Memory Global memory: 32 MB SDRAM

    Flash memory: 8 MB

    ADC

    1 x 16-bit ADC with mux

    4 x 12-bit ADC

    5 ADC channels (1 x 16-bit + 4 x 12-bit) can be

    sampled simultaneous

    16-bit resolution

    10 V input voltage range

    2s conversion time, 12-bit resolution

    10 V input voltage range

    800 ns conversion time

    Slave DSP subsystem Texas Instruments TMS320F240 DSP

    16-bit fixed-point processor

    20 MHz clock frequency

    64 K x 16 external program memory

    28 K x 16 external data memory

    4 K x 16 dual-port memory for communication

    16 K x 16 flash memory

    1 x 3-phase PWM output, 4 x 1-phase PWM output

    13 mA maximum output current

    Host interface 32-bit PCI host interface

    5VPCI slot

    33MHz5 %

    Power supply +5 V 5 %, 2.5 A

    +12 V 5 %, 0.3 A

    Power consumption 18.5 W

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 26

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 27

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 28

  • (a)

    (b)

    (c)

    Parameter Settings for (a) ADC, (b) ADC Multiplexed and (c) PWM Blocks

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 29

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 30

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 31

  • Efficiency of MPPT Algorithm

    (a) Short-circuit Current Isc

    (b) Open-circuit Voltage Voc

    (c ) Fill Factor FF

    MPPT =0tPMPPT t dt

    0tPmax t dt

    (2)

    Maximum Power (Pmax ) Prediction Model

    Isc = IscoG

    G0

    (3)

    =0

    1+0

    0

    (4)

    = 0 1

    (5)

    0 =ln(+0.72)

    1+(6)

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 32

  • (d) Maximum Power Output (Pmax)

    voc =Voc

    nKT q(7)

    Pmax = FF Voc Isc (8)

    Pmax =ln(+0.72)

    1+ 1

    0

    1+0

    0

    0

    (9)

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 33

  • MATLABTM / SIMULINKTM Model of Maximum Power Output (Pmax)

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 34

  • Sub-System for Fill Factor

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 35

  • Sub-system for Short Circuit Current

    Sub-system for Open Circuit Voltage

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 36

  • Response of Pmax, Voc , Isc , FF & Irradiance

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 37

  • Fig. Experimental Result of PO with Delta D=0.01

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 38

  • MPPT ALGORITHM COMPARISION

    Maximum Power Point

    Techniques Method

    ( %)

    Peak

    Overshoot

    ( %)

    Settling

    time

    ( sec)

    Dynamic

    Response

    Delay

    ( sec)

    Steady

    State Error

    ( %)

    Sensors

    Voltage -V

    Current -I

    Perturb & Observe (D=0.1)77.60 - 79.39 No 0.48 0.06 15.14 V, I

    Perturb & Observe (D=0.01) 81.00 - 81.60 No 0.41 0.039 12.77 V, I

    Perturb & Observe (D=0.001) 81.23 - 84.37 No 0.40 0.04 12.03 V, I

    Incremental Conductance 86.32 - 87.25 3.35 1.78 0.001 7.35 V, I

    Neural Network 87.35 - 90.10 2.185 0.6439 0.038 3.88 V, I

    Adaptive Neuro Fuzzy Inference

    System (ANFIS)87.15 - 93.31 6.56 5.35 0 3.55 V, I

    ANFIS &

    CVT

    12V NA 7.28 0.18 0.1 9 V

    12V 87.15 - 93.31 6.56 5.35 0 3.55 V, I

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh

    39

  • Selective Harmonic Elimination in a Solar Powered Multilevel

    Inverter

    Dr. Shimi S.L

    Assistant Professor, EE

    NITTTR, Chandigarh

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 40

  • Weight, Cost, Power Loss and Harmonics

    Comparison for Different Inverter Topologies Ty

    pe

    of

    inve

    rte

    r

    No

    . of

    swit

    che

    s

    No

    . of

    cap

    acit

    ors

    No

    . of

    dio

    de

    s

    We

    igh

    t

    Co

    st

    Po

    we

    r Lo

    ss

    (W)

    Har

    mo

    nic

    s

    2-level12 0 0

    Light

    Weight

    Cheap Very low THD > 40%

    5-level diode

    Clamped24 12 36

    Medium Weight Costly Low 5th harmonics Eliminated

    THD >15%

    5-level capacitor

    clamped24 30 0

    Heavy Very Costly Low 5th harmonics Eliminated

    THD >15%

    5-level cascaded24 0 0

    Light

    Weight

    Cheap Low 5th harmonics Eliminated

    THD >15%

    9-level diode clamped48 24 42

    Medium Weight Costly medium 5th , 7th & 11th harmonics Eliminated

    THD >7%