Search for Higgs bosons decaying to aa in the final state ... · USLUA, November 2015 B. Kaplan...

17
Search for Higgs bosons decaying to aa in the μμτ τ final state in pp collisions at s = 8 TeV with the ATLAS experiment Phys. Rev. D 92, 05002 B. Kaplan (NYU) November , 2015 USLUA, November 2015 B. Kaplan (NYU) [email protected] 1

Transcript of Search for Higgs bosons decaying to aa in the final state ... · USLUA, November 2015 B. Kaplan...

Search for Higgs bosons decaying to aa in theµµττ final state in pp collisions at

√s = 8 TeV

with the ATLAS experimentPhys. Rev. D 92, 05002

B. Kaplan (NYU)

November , 2015

USLUA, November 2015 B. Kaplan (NYU) [email protected] 1

Physics Motivation

Exotic Decay of SM-like Higgs, h

Coupling measurements allow for

non-SM decays up to BR ∼ O(40%),

at 95% CL

Consider a new pseudo-scalar Higgs boson, a

• Focus on, i.e. optimize selection for, 2 ·mτ < ma < 2 ·mb

Leptons from a decay will be highly collimated

We extend analysis above 2 ·mb in case couplings to quarks are suppressed

• Coupling related to mass of decay products ⇒ large BR(a→ ττ) at low mass

• a→ µµ gives a narrow resonance ⇒ clean experimental signature

• One previous search for this signature from D∅, which had no sensitivity

The Next-to-Minimal-Supersymmetric Standard Model

• The NMSSM is a well-motivated (and quite popular) SUSY modelD. Curtin et. al., Phys. Rev. D 90, no. 7, 075004 (2014)

• Naturally achieves mh = 125 GeV

• Notable in that it predicts an additional light pseudoscalar Higgs bosons (a)• Also predicts another scalar Higgs, H, which can decay H → aa

USLUA, November 2015 B. Kaplan (NYU) [email protected] 2

Analysis Overview

1. Pre-select µ±µ∓ events

2. Signal Selection: µ±µ∓+`±trk∓

3. Validation: µ±µ∓+`±trk±

4. Control: µ±µ∓+(b-)jets

Strategy: Use a→ µµ resonance to perform a bump-hunt

• We use single and dimuon triggers

• Require 2 isolated∗ muons, with pT >16 GeV∗For lower a masses, the muons will be collimated. We correct the isolation variable toaccount for this

• They must be OS and pT (µµ) >40 GeV

USLUA, November 2015 B. Kaplan (NYU) [email protected] 3

Analysis Overview

1. Pre-select µ±µ∓ events2. Signal Selection: µ±µ∓+`±trk∓

3. Validation: µ±µ∓+`±trk±

4. Control: µ±µ∓+(b-)jets

Detector Signature:

Optimize SR for selecting a→ ττ• Best sensitivity found for at least one τ → `

• Other τ decay inclusive⇒ Require 1, 2, or 3 nearby tracks

• Lead track carries charge of τ⇒ ` and leading track are OS

• Two SRs based on ` flavor

USLUA, November 2015 B. Kaplan (NYU) [email protected] 3

Analysis Overview

1. Pre-select µ±µ∓ events2. Signal Selection: µ±µ∓+`±trk∓

3. Validation: µ±µ∓+`±trk±

4. Control: µ±µ∓+(b-)jets

Detector Signature:

Test methods in validation regions• Invert OS requirement on ` and leading track

• Comparable backgrounds, but no signal

• Two VRs based on ` flavor

USLUA, November 2015 B. Kaplan (NYU) [email protected] 3

Analysis Overview

1. Pre-select µ±µ∓ events2. Signal Selection: µ±µ∓+`±trk∓

3. Validation: µ±µ∓+`±trk±

4. Control: µ±µ∓+(b-)jets

Detector Signature:

Measure backgrounds in control regions• Replace ττ selection with jets

• Two CRs for light- and heavy- flavorbackgrounds

USLUA, November 2015 B. Kaplan (NYU) [email protected] 3

Fitting Strategy

Perform a bump hunt in mµµ from 3.7 to 50 GeV in SRs

• Background and signal models measured in the data!

• Use simulation to study shapes

• Need a robust background model for entire mass range

1. Non-resonant background (mainly DY)

2. tt̄ background

3. SM (J/ψ, Υ, Z )

• The J/ψ is used to constrain the ψ′

• The low-end Z tail can be significant above 40 GeV

• All resonances assumed to have a narrow width

• Use a common shape for all narrow µµ resonances

USLUA, November 2015 B. Kaplan (NYU) [email protected] 4

The Narrow µµ Resonances

[GeV]µµm3 3.5 4 4.5 5 5.5

% R

esid

ua

l

­100

0

100~~

Event / 50 M

eV

1

10

210

Eve

nt

/ 5

0 M

eV

50

100

150

200

250

300

350

Signal MC

Best Fit

Syst.σ 1±Fit

= 125 GeVh = mH

= 5 GeV, ma

, mµSR

ATLAS Simulation

= 8 TeVs

X → µµ Double-Sided Crystal Ball• Gaussian core, low- and high-end power laws• 3 free parameters, µCB , σCB , αCB

measured in data• Mean (µCB), width (σCB) linearly depend on mX

• Tested on 24 signal samples∗, varying ma and mH

• Fit to SM resonances in data shown below

2.8 3 3.2 3.4 3.6 3.8 4

Events

/ 1

5 M

eV

0.5

1

1.5

2

2.5

3

310×

Data

Background Model

Fit Uncertainty

ATLAS

­1 = 8 TeV, 20.3 fbs

CRj

[GeV]µµm2.8 3 3.2 3.4 3.6 3.8 4

% R

esid

ual

­20

0

20

9 9.5 10 10.5 11 11.5

Events

/ 3

0 M

eV

0.2

0.3

0.4

0.5

0.6

0.7

310×

Data

Background Model

Fit Uncertainty

ATLAS

­1 = 8 TeV, 20.3 fbs

CRj

[GeV]µµm9 9.5 10 10.5 11 11.5

% R

esid

ual

­20

0

20

* Details on signal shape (low mass tail and systematics) can be found in the backup

USLUA, November 2015 B. Kaplan (NYU) [email protected] 5

Background MeasurementCRj: ττ(`+ trk)⇒ ≥ 1 jet

Eve

nts

/ G

eV

210

310

410

510

610

710

ATLAS­1

= 8 TeV, 20.3 fbsCRjBackground Model

Fit Uncertainty

* ComponentγZ/

Componenttt

Data

* MCγZ/

MCtt

Other

2.8 3 3.2 3.4 3.6 3.8 4

Events

/ 1

5 M

eV

0.5

1

1.5

2

2.5

3

310×

9 9.5 10 10.5 11 11.5E

vents

/ 3

0 M

eV

0.2

0.3

0.4

0.5

0.6

0.7

310×

[GeV]µµm10 20 30 40 50 60 70

% R

esid

ua

l

­10

0

10

CRb: ττ(`+ trk)⇒ ≥ 2 b-jets

Eve

nts

/ G

eV

20

40

60

80

100

120

140

ATLAS­1

= 8 TeV, 20.3 fbsCRb

Data

Background Model

Fit Uncertainty

* ComponentγZ/

Componenttt

* MCγZ/

MCtt

Other

[GeV]µµm20 30 40 50 60 70

% R

esid

ua

l

­50

0

50

• Results used to constrain fit to SRsSome details...

• Resonant backgrounds (J/Ψ, Υ, Z) use a double-sided Crystal Ball

Three CB parameters shared with a→ µµ resonance

• Drell–Yan background modeled by Pγ∗ = eαγ∗ ·mµµ (mµµ)nγ∗

• tt̄ modeled by Rayleigh distribution: Ptt = mµµ × Gaus(mµµ|µtt = 0, σtt)USLUA, November 2015 B. Kaplan (NYU) [email protected] 6

Results: Fit to Signal Region

Eve

nts

/ 200

MeV

[GeV]µµm4 5 6 7 8 910 20 30 40 50 60%

Res

idua

l

-1000

100

5

10

15

ATLAS-1 = 8 TeV, 20.3 fbs

µSR Data

Background Model

Fit Uncertainty

* ComponentγZ/

Componenttt

*γZ/

tt

Other

aa) = 10 %BR(h

Eve

nts

/ 200

MeV

[GeV]µµm4 5 6 7 8 910 20 30 40 50 60%

Res

idua

l-100

0100

5

10

15

ATLAS-1 = 8 TeV, 20.3 fbs

SRe Data

Background Model

Fit Uncertainty

* ComponentγZ/

Componenttt

*γZ/

tt

Other

aa) = 10 %BR(h

Constrained from Fit to CR

• Background shape parameters (2 for γ∗, 1 for tt̄, multiple for SM resonances)

• Relative contributions of higher Ψ and Υ spin states

• Relative contribution of Z to total Z/γ∗

Unconstrained:Relative contributions of Ψ, Υ, tt̄ and Z/γ∗

Simulated signal shown in brown for ma = 5, 10 and 20 GeVUSLUA, November 2015 B. Kaplan (NYU) [email protected] 7

Results: Statistical Analysis

[GeV]µµm4 5 6 7 8 9 10 20 30 40 50

p­v

alu

e

­210

­110

1

σ1

σ2

ATLAS­1 = 8 TeV, 20.3 fbs

• Observation consistent with SM

• Min p-value = 0.022 for mµµ = 8.65 GeV

• Global p-value > 0.5

• Upper limit on BR(h→ aa) as low as 3.5%for ma = 3.75 GeV, mh = 125 GeV

• Upper limit on BR(H → aa)× σ(gg → H)from 2.33 to 0.72 pb, for ma = 5 GeV

• Compare to D∅ result: BR(h→ aa) > 100%

Scan vs. ma for 125 GeV Higgs:

[GeV]am4 5 6 7 8 9 10 20 30 40

2 )ττ→

BR

(a×

aa)

BR

(h×

SM

σ h

)→

(gg

σ

-210

-110

1

10

210 = 125 GeVh = mHmObserved 95% CLMedian Expected 95% CL

σ 1 ± σ 2 ±

ATLAS-1 = 8 TeV, 20.3 fbs

Scan vs. mH (new heavy scalar) for 5 GeV a boson:

[GeV]Hm100 150 200 250 300 350 400 450 500

[p

b]

2 )τ

τ→

BR

(a×

aa

) →

BR

(H×

H)

→(g

­110

1

10

210 = 5 GeVam

Observed 95% CL

Median Expected 95% CL

σ 1 ±

σ 2 ±

H→SM gg

ATLAS­1 = 8 TeV, 20.3 fbs

USLUA, November 2015 B. Kaplan (NYU) [email protected] 8

Concluding Thoughts

• These are the first limits on this well motivated channel fromthe LHC

• They are the first ever to have sensitivity to BSM physics

• The NMSSM is getting a lot of attention during Run 2, in thischannel and others, so...STAY TUNED!

USLUA, November 2015 B. Kaplan (NYU) [email protected] 9

Backup

USLUA, November 2015 B. Kaplan (NYU) [email protected] 10

‘a’ Mass

ma < 2mτ : a→ µµ(ee)

• Covered by ATLASlepton-jets analysis

2mτ < ma < 2mb: a→ ττ

• 4τ final states are hard!

• We require 1 a→ µµ andtake a 1% hit in BR

• Prime focus of this analysis

2mb < ma: a→ bb

• 4b final states are hard!

• 2µ2τ down by O(0.01)Interesting in case decay to b’s(quarks) are suppressed.

D. Curtin et al., arXiv:1312.4992 [hep-ph]

USLUA, November 2015 B. Kaplan (NYU) [email protected] 11

Signal Model

[GeV]µµm3 3.5 4 4.5 5 5.5

% R

esid

ual

­100

0

100~~

Eve

nt

/ 5

0 M

eV

1

10

210

Event / 50 M

eV

50

100

150

200

250

300

350

Signal MC

Best Fit

Syst.σ 1±Fit

= 125 GeVh = mH

= 5 GeV, ma

, mµSR

ATLAS Simulation

= 8 TeVs

a→ µµ Double-Sided Crystal Ball• Gaussian core, low- and high-end power laws• 3 free parameters, µCB , σCB , αCB

measured in data• Width (σCB) enhanced for large mH

determined in simulation

a→ ττ → µµ Gaussian Tail• Mean and width set proportional to CB

determined in simulation• Width was no mH dependence• Fraction of ττ , fττ

determined in simulation

Systematics∗

Shape: Parameters measured in data.Extra uncert. on αCB and fττ to cover tails

Norm.: dom. by theory (11%)∗details in backup

USLUA, November 2015 B. Kaplan (NYU) [email protected] 12

Systematics

Background Model: Use spurious signal method:Perform S+B fit to high stat. bkg-only sample

Signal Model: Parameters measured in data.Extra systematics on αCB and fττ parameters,to ensure coverage of tails

Signal Normalization: Dominant sources:

1. Theory systematic (only applicable to limit vs. ma): 11%

2. Track momentum: vary track pT by 2% ⇒ 5% change in signal acceptance

Sub-Dominant Sources: trigger efficiency, the lepton reconstructionefficiency, the lepton energy scale and resolution, and thecharge of the track

USLUA, November 2015 B. Kaplan (NYU) [email protected] 13

Fits in the Validation RegionBased on SR’s, but require 3rd lepton and track to be SS

Eve

nts

/ 2

00

Me

V

[GeV]µµm4 5 6 7 8 910 20 30 40 50 60

% R

esid

ua

l

­100

0

100

5

10

ATLAS­1

= 8 TeV, 20.3 fbs

µVR Data

Background Model

Fit Uncertainty

* ComponentγZ/

Componenttt

*γZ/

tt

Other

Eve

nts

/ 2

00

Me

V

[GeV]µµm4 5 6 7 8 910 20 30 40 50 60

% R

esid

ua

l

­100

0

100

5

10

ATLAS­1

= 8 TeV, 20.3 fbs

VRe Data

Background Model

Fit Uncertainty

* ComponentγZ/

Componenttt

*γZ/

tt

Other

Constrainted from Fit to CR

• Background shape parameters (2 for γ∗, 1 for tt̄, multiple for SM resonances)• Relative contributions of higher Ψ and Υ spin states• Relative contribution of Z to total Z/γ∗

Unconstrained:Relative contributions of Ψ, Υ, tt̄ and Z/γ∗USLUA, November 2015 B. Kaplan (NYU) [email protected] 14