Search for BSM Higgs Bosons at ATLAS - Agenda …...h=A=H!˝˝H+ !˝had H+ !˝lep H+ !c sH! H++ ! +...

31
Search for BSM Higgs Bosons at ATLAS Markus Warsinsky on behalf of the ATLAS collaboration

Transcript of Search for BSM Higgs Bosons at ATLAS - Agenda …...h=A=H!˝˝H+ !˝had H+ !˝lep H+ !c sH! H++ ! +...

Search for BSM Higgs Bosons at ATLAS

Markus Warsinsky

on behalf of the ATLAS collaboration

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

hep-ph/0608079v1

I MSSM neutral h/H/A→ ττ

I Charged Higgs bosons

H+ → τhadν

H+ → τlepν

H+ → cs̄

I Fermiophobic H → γγ

I Doubly charged Higgs H++ → µ+µ+

I NMSSM a1 → µµ

2 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

MSSM h/A/H → ττ (ATLAS-CONF-2011-132) 1.06 fb−1

MSSM Higgs sector

I 5 Higgs bosons: h,H (CP=+1)A (CP=-1),H±

I soft breaking parameters fixed inbenchmark scenarios (e.g. mmax

h ),keeping dependence on mA, tanβ

I medium/high tanβ:I b-quark associated production and

gluon-gluon-fusionI almost no decays to WW/ZZ,≈ 90% bb̄, 10% ττ

[GeV]φM

2103

10

+ X

) [p

b]

φ →

(pp

σ

­410

­310

­210

­110

1

10

210

A→gg

h/H→gg

bbA

bbh/H

= 30βtanmhmax scenario

h H

A = 7 TeVs

LH

C H

IGG

S X

S W

G 2

010

Analyzed channels BR

ττ → eµ+ 4ν 6%ττ → e/µτhad + 3ν 46%ττ → τhadτhad + 2ν 42%

3 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

eµ channel

I 1 e, 1 µ, isolation, qe = −qµI cuts against tt̄, diboson:

I ∆Φeµ > 2.0 rad,I peT + pµT + Emiss

T < 120 GeV

I 90% Z → ττ : embedddingtechnique from Z → µµ

I 5% QCD multi-jet: estimatedfrom control regions

I remaining 5% from simulation

I use effective mass:

meff.ττ =

√(pe + pµ + pEmiss

T)2

Data 2471

Backgrounds 2600± 200Signal (mA = 120 GeV, 155± 6tan β = 20, mmaxh )

[GeV]µT,

+pT,e

+pT,missE

0 50 100 150 200 250 300 350 400

Events

/ 1

0 G

eV

0

100

200

300

400

500

600

700

800

900Data 2011

=20β, tanττ →A(120)/h/H

) embeddedττ→*(γZ/

Others

Diboson

QCD multi­jet

& single­tttsyst.

PreliminaryATLAS

­1Ldt = 1.06 fb∫ = 7 TeV, s

channelµe

effective [GeV]ττm

0 50 100 150 200 250

Events

/ 1

0 G

eV

0

100

200

300

400

500

600

700 Data 2011

=20β, tanττ →A(120)/h/H

) embeddedττ→*(γZ/

Others

Diboson

QCD multi­jet

& single­ttt

syst.

PreliminaryATLAS

­1Ldt = 1.06 fb∫ = 7 TeV, s

channelµe

4 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

e/µτhad channels

I 1 e or 1 µ, 1 identified hadronic τ ,opposite electric charge

I EmissT > 20 GeV (vs. QCD, Z → ``)

I mT (`, EmissT ) < 30 GeV (vs. W → `ν)

I veto on double leptons

I ≈ 70% Z → ττ : embedding

I QCD and W+jets: estimate fromsame-sign control region

I use Missing Mass Calculator(MMC)(NIM A654 (2011) 481)

eτhad µτhad

Data 626 1287

Backgrounds 775± 40 1378± 43Signal (mA = 120 GeV, 41± 4 75± 5tan β = 20, mmaxh )

[GeV]T,missE

0 10 20 30 40 50 60 70 80 90 100

Eve

nts

/ 2

Ge

V

0

100

200

300

400

500

[GeV]T,missE

0 10 20 30 40 50 60 70 80 90 100

Eve

nts

/ 2

Ge

V

0

100

200

300

400

500Data 2011

=20β, tanττ→A(120)/H/h

) emb.(OS­SS)ττ→*(γZ/

Others(OS­SS)

W+jets (OS­SS)

Same Sign

stat.

channelshad

τµ + hadτe

­1 L = 1.06 fb∫ = 7TeV, s

ATLAS Preliminary

[GeV]ττMMC m

0 50 100 150 200 250 300 350 400

Eve

nts

/ 1

0 G

eV

0

50

100

150

200

250

300

350

400

[GeV]ττMMC m

0 50 100 150 200 250 300 350 400

Eve

nts

/ 1

0 G

eV

0

50

100

150

200

250

300

350

400Data 2011

=20β, tanττ→A(120)/H/h

) emb.(OS­SS)ττ→*(γZ/

Others(OS­SS)

W+jets (OS­SS)

Same Sign

stat.

channelshad

τµ + hadτe

­1 L = 1.06 fb∫ = 7TeV, s

ATLAS Preliminary

5 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

τhadτhad channel

I two identified hadronic τ ’s

I EmissT > 25 GeV vs. QCD and Z

I veto on events with electron or muon

I dominant QCD background estimatedfrom control regions

I Z → ττ and W → τν fromsimulation, validated with embeddingtechnique

I use visible mass mτhadτhad

Data 245

Backgrounds 233+44−28

Signal (mA = 200 GeV, 19± 1tan β = 20, mmaxh )

[GeV]missTE

0 20 40 60 80 100

Events

/ 5

GeV

0

20

40

60

80

100

120

140

[GeV]missTE

0 20 40 60 80 100

Events

/ 5

GeV

0

20

40

60

80

100

120

140 Data 2011

=20β, tanττ →A(200)/H/h

Multi­Jet

)ττ→*(γZ/

) + jetsντ→W(

Others

stat.

­1Ldt = 1.06 fb∫ = 7 TeV, s

PreliminaryATLAS

channelhad

τhad

τ

visible [GeV]ττm

0 100 200 300 400 500 600

Events

/ 1

5 G

eV

0

10

20

30

40

50

60

70

visible [GeV]ττm

0 100 200 300 400 500 600

Events

/ 1

5 G

eV

0

10

20

30

40

50

60

70Data 2011

=20β, tanττ →A(200)/H/h

Multi­Jet

)ττ→*(γZ/

) + jetsντ→W(

Others

stat.

­1Ldt = 1.06 fb∫ = 7 TeV, s

PreliminaryATLAS

channelhad

τhad

τ

6 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

MSSM h/A/H → ττ : Limits

σ ×BR(φ→ ττ)

I assume only one resonance:I 100% gg → φ or 100% bb̄φ

(acceptances slightly different)

I useful to test arbitrary models

[GeV]φm

100 200 300 400 500 600

) [p

b]

ττ →φ

BR

(× φ

σ95%

CL u

pp

er

limit o

n

­110

1

10

210

310 CLsφ →Observed gg

φ →Expected gg

CLsφObserved bb

φExpected bb

) theory ττ→SM

x BR(HSM

σ

­1 Ldt = 1.06 fb∫ = 7 TeV, s

All channels

ATLAS Preliminary

(mA, tan β)-plane

I have to assume specific(c)MSSM scenario

I here: mmaxh -scenario

[GeV]Am

100 150 200 250 300 350 400 450

βta

n

0

10

20

30

40

50

60All channels

­1 Ldt = 1.06 fb∫ = 7 TeV, s

>0µ, maxhm

ATLAS Preliminary

Observed CLsExpected CLs

σ 1±σ 2±

LEP observed­1ATLAS 36 pb expected­1ATLAS 36 pb

7 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

Charged Higgs bosons

I predicted in Higgs doublet(e.g. MSSM) and triplet models

I mH+ < mt: producedpredominantly in top quarkdecays

I tanβ > 3 ⇒ decays to τνpreferred

I heavy H+: gb→ tH+

important, more data needed

f

f′g

g

g

ντ

τ+

H+

W-

t

t

b

b

βtan0 10 20 30 40 50

bH

→B

R(t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

FeynHiggs

HDECAY

= ­200 GeVµ

= 1

00 G

eV

±H

m = 1

20 G

eV

±Hm

= 1

40 GeV

±Hm

= 160 GeV±

Hm

LH

C H

IGG

S X

S W

G 2

011

8 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

τhad channel (W → qq̄′, H+ → τhadν)

I 1 identified hadronic τ (pT > 35 GeV),veto on identified electrons and muons

I missing transverse energy

I at least 4 jets, ≥ 1 b-tagged

I final discriminant: mT (τhad, EmissT )

I background with true τ -leptons from data:tt̄→ µ+jets and embedding technique

I e→ τ and jet→ τ misidentification byapplying measured misd. probabilities tosimulation

I multi-jet (no real EmissT ): fit of Emiss

T

distribution to data

[GeV]Tm

0 50 100 150 200 250 300

Eve

nts

/ 2

0 G

eV

0

5

10

15

20

25Data 2011

misidτ→e

misidτ→Jet

τTrue

Multi−jets

(130), B=0.1+

H

+background+

H

­1 L dt=1.03 fb∫

ATLAS Preliminary

9 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

Limits for H+ → τhadν channel

I Observation compatible with background expectation

Model independent

I place limit onBR(t→ H+b)×BR(H+ → τν)

I can be compared to any model!

[GeV]+H

m

90 100 110 120 130 140 150 160

)τν

→+

H B

) b

+H

→ t95

% C

L o

n B

(

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Expected Limit

σ 1±Expected

σ 2±Expected

Observed Limit

D0 Observed

­1 L dt= 1.03 fb∫Data 2011

ATLAS Preliminary

MSSM Interpretation

I assume specific (c)MSSM model,here: mmax

h

I limit in (mH+ , tanβ)-plane

[GeV]+H

m

90 100 110 120 130 140 150 160

βta

n

0

10

20

30

40

50

60Expected Limit

σ 1±Expected

σ 2±Expected

Observed Limit

σ 1 ±Observed,

theor. uncertainties

­1 L dt= 1.03 fb∫Data 2011

maxhm

ATLAS Preliminary

10 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

τlep channels H+ → τlepν,W → qq̄′ or `ν

I common technique: introduce new variable

cos θ∗l =2m2

bl

m2top−m2

W− 1

I constrain tt̄→ bb̄W+W− contribution(cannot rely on theory) from control regionwith large cos θ∗l , signal region: small cos θ∗l

I final discriminants: transverse masses mHT ,

mHT2 (Phys. Rev. D 81 (2010) 055010)

example for 1 lepton channel

*θcos­1 ­0.5 0 0.5 1

Eve

nts

/ 0

.2

0

200

400

600

800

1000

1200

1400

*θcos­1 ­0.5 0 0.5 1

Eve

nts

/ 0

.2

0

200

400

600

800

1000

1200

1400

ATLAS Preliminary

= 130 GeV+H

m

) = 10%+

bH→Br(t

­1Ldt = 1.03 fb∫

)+

(with Htt

W+

(WttSingle top

Z + jets

W + jets

Diboson

QCD

Data 2011

1le

pto

nch

ann

el

[GeV]HTm

20 40 60 80 100 120 140 160 180

Eve

nts

/ 1

0 G

eV

0

20

40

60

80

100

120

[GeV]HTm

20 40 60 80 100 120 140 160 180

Eve

nts

/ 1

0 G

eV

0

20

40

60

80

100

120

ATLAS Preliminary

= 130 GeV+H

m

) = 10%+

bH→Br(t

­1Ldt = 1.03 fb∫

)+

(with Htt

W+

(WttSingle top

Z + jets

W + jets

Diboson

QCD

Data 2011 2le

pto

nch

ann

el

[GeV]HT2m

40 60 80 100 120 140 160 180 200

Eve

nts

/ 1

0 G

eV

0

50

100

150

200

250

[GeV]HT2m

40 60 80 100 120 140 160 180 200

Eve

nts

/ 1

0 G

eV

0

50

100

150

200

250

ATLAS Preliminary

= 130 GeV+H

m

) = 10%+

bH→Br(t

­1Ldt = 1.03 fb∫

)+

(with Htt

W+

(WttSingle top

Z + jets

Diboson

QCD & W

Data 2011

11 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

Limits for leptonic channels, H+ → τlepν,W → qq̄/`ν′

I Observation compatible with background expectation ⇒ set limits

Model independent

I place limit on BR(t→ H+b)assuming BR(H+ → τν) = 1

I can be compared to any model!

[GeV]+H

m

90 100 110 120 130 140 150 160

+ b

H→

t 95%

C.L

. upper

bound o

n B

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Observed CLsExpected

σ 1±σ 2±

ATLAS Preliminary = 7 TeVsData 2011

­1Ldt = 1.03 fb∫

MSSM Interpretation

I assume specific (c)MSSM model,here: mmax

h

I limit in (mH+ , tanβ)-plane

[GeV]+H

m

90 100 110 120 130 140

βta

n

0

10

20

30

40

50

60

Expected Limit

σ 1±Expected

σ 2±Expected

Observed Limit

σ 1±Observed,

theor. uncertainties

­1Ldt = 1.03 fb∫Data 2011

maxhm

ATLAS Preliminary

12 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

H+ → cs̄, ATLAS-CONF-2011-094,∫Ldt = 35 pb−1

H+ → cs̄

I H+ → cs̄ dominatesfor tanβ < 1

I details of analysis inbackup

I observationcompatible withbackgroundexpectation

I set limits onBR(t→ H+b)assumingBR(H+ → cs̄) = 1

[GeV]+H

m

90 100 110 120 130

) =

1s

c→

+b)

with B

(H+

H→

95%

CL o

n B

(t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expected Limit

σ 1±Expected

σ 2±Expected

Observed Limit

CDF Observed

D0 Observed

Limits at 95% CL:­1

L = 35 pb∫ATLAS Preliminary

mH+ [GeV]

I already with 35 pb−1 comparable toTevatron results

13 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

Fermiophobic H → γγ, ATLAS-CONF-2011-149,∫Ldt = 1.08 fb−1

Fermiophobic Benchmark Scenario

I Higgs doublet or triplet modelswith decreased couplings to someor all fermions

I fermiophobic benchmark scenario:I no coupling to fermionsI gauge boson couplings as in SM

I mH < 120 GeV:σ ×BR(H → γγ) increasedcompared to SM [GeV]HM

100 150 200 250

BR

[p

b]

× σ

-310

-210

-110

1

10

210

LH

C H

IGG

S X

S W

G 2

011

Fermiophobic = 7TeVs

γγ

(SM)γγ

γZ (SM)γZ

WW

WW (SM)

ZZ

ZZ (SM)

14 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

I 2 isolated photons,pT > 40/20 GeV,100 GeV < mγγ < 160 GeV

I VH and VBF only ⇒ boostedHiggs, use 3 bins of pT(γγ):

I pT(γγ) ≤ 50 GeVI 50 GeV < pT(γγ) ≤ 100 GeVI 100 GeV < pT(γγ)

I background: 2nd order Bernsteinpolynomial

I signal: Crystal Ball + wide Gaussian

mγγ [GeV] mγγ [GeV] mγγ [GeV]

15 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

Exclusion limits @95% CL

I simplistic fermiophobic benchmark model

I expected:110 GeV — 116 GeV

I observed:110 GeV — 111 GeV and 113.5 GeV — 117.5 GeV

16 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

Doubly charged Higgs, ATLAS-CONF-2011-127,∫Ldt = 1.6 fb−1

I predicted in left-right symmetric,Higgs triplet and little Higgs models

I production via pp→ H++H−−

I same-sign dimuons

I look for dimuon mass resonance

Dim

uon p

airs / 1

0 G

eV

­110

1

10

210

Data

µNon­prompt

Diboson

(150 GeV)±±LH

(200 GeV)±±LH

(300 GeV)±±LH

ATLAS Preliminary ∫ ­1Ldt = 1.6 fb

[GeV]±µ±µm

0 50 100 150 200 250 300 350

Da

ta /

bkg

0

1

2

I no excess ⇒ set limits onσ(H++H−−)×BR(H±± → µ±µ±)

mass [GeV]±±H

100 150 200 250 300 350 400

) [f

b]

±µ ±

µ → ±±

BR

(H×)±±

H±± H

→(p

p

σ -110

1

10

210

Observed 95% upper limit

Expected 95% upper limit

68% of Pseudo-Experiments

95% of Pseudo-Experiments

)=100%±µ±µ→±± production, BR(H±±Left-handed H

)=100%±µ±µ→±± production, BR(H±±Right-handed H

ATLAS Preliminary

∫ -1Ldt = 1.6 fb

I mH++L

< 375 GeV, mH++R

< 295 GeV(assuming BR(H±± → µ±µ±) = 1)

17 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

NMSSM a1 → µµ, ATLAS-CONF-2011-020,∫Ldt = 39 pb−1

I NMSSM: additional complexsinglet scalar field to solve µproblem

I 3 CP-even scalars (h1, h2, h3),2 CP-odd scalars (a1, a2), H±

I a1 can be very light, i.e.ma1

< 2mB

Analysis

I opposite sign dimuons

I likelihood ratio selection

I limit setting by fit to massspectrum

I Υ region excluded

Invariant dimuon mass:

[GeV]µµm

6 7 8 9 10 11 12

Entr

ies/1

00 M

eV

210

310

410

510

ATLASPreliminary

­1

L dt = 39 pb∫ = 7 TeV, s

Data : Before the LR selection

Data : After the LR selection

) = 6.5 GeV1

MC : m(a

) = 7.5 GeV 1

MC : m(a

) = 8.5 GeV1

MC : m(a

) = 11.5 GeV1

MC : m(a

[GeV]µµm

6 7 8 9 10 11 12

Entr

ies/1

00 M

eV

210

310

410

510

mµµ[GeV]Limits on σ(gg → a1 → µµ)

[GeV]µµm7 8 9 10 11

[p

b]

µµ

→ 1 a

→g

g

σ

0

200

400

600

800

1000

1200

1400

1600 ATLAS Preliminary

= 7 TeVs

­1 L dt = 39 pb∫

Observed limit

Expected limit

mµµ[GeV]18 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

Summary and Outlook

I wide variety of BSM Higgsmodels probed

I observations compatible withStandard Model expectations

I set strict upper limits on crosssections and branching fractions

I more data being analyzed,updates soon

I still large parts of BSM Higgsmodels open for discovery!

Day in 2011

28/02 30/04 30/06 30/08 31/10

]­1

To

tal In

tegra

ted L

um

inosity [fb

0

1

2

3

4

5

6

7 = 7 TeVs ATLAS Online Luminosity

LHC Delivered

ATLAS Recorded

­1Total Delivered: 5.61 fb­1Total Recorded: 5.25 fb

19 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

Backup

20 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

H+ → cs̄, ATLAS-CONF-2011-094,∫Ldt = 35 pb−1

H+ → cs̄,W → eν/µν

I H+ → cs̄ dominates for tanβ < 1

I suppress QCD multijet background byrequiring large Emiss

T and mT

I kinematic fit with top mass constraintto select best charged Higgs candidate

I remaining QCD background estimateddata-driven

I W+ ≥ 4 jets normalized to data

I set limits on BR(t→ H+b) assumingBR(H+ → cs̄) = 1

0 20 40 60 80 100 120 140 1600

5

10

15

20

25

30

35

[GeV] jjm

0 20 40 60 80 100 120 140 160

Events

/ 5

GeV

0

5

10

15

20

25

30

35

­1 L = 35 pb∫

Data 2010Background onlyUncertainty

Signal + Background = 110 GeV+

Hm

b) = 18%+ H→BR(t

tNon­t

ATLAS Preliminary

mjj[GeV]

[GeV]+H

m

90 100 110 120 130

) =

1s

c→

+b)

with B

(H+

H→

95%

CL o

n B

(t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expected Limit

σ 1±Expected

σ 2±Expected

Observed Limit

CDF Observed

D0 Observed

Limits at 95% CL:­1

L = 35 pb∫ATLAS Preliminary

mH+ [GeV]

I already with 35 pb−1

comparable to Tevatron results21 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

Experimental techniques: ττ mass reconstruction

I use mass sensitive variable as final discriminantI eµ channel: effective mass

meff.ττ =

√(pe + pµ + pEmiss

T)2, pEmiss

T= (Emiss

T , EmissT

,x, EmissT

,y, 0)

I τhadτhad channel: visible mass mτhadτhad

Missing Mass Calculator (MMC)

I used in e/µτhad channel

I NIM A654 (2011) 481

I split EmissT in two vectors

(≡ neutrinos from each τ)

I invariant mass with visible decayproducts = mτ

I scan over free pars. and weightwith PDF to come from τ decay

I find mass with highest probability [rad]3Dθ∆

0 0.05 0.1 0.15 0.2

Arb

itra

ry u

nits

0

0.005

0.01

0.015 ATLAS Simulation

Simulationττ→Z

Probability function

decayτ1­prong

50 [GeV]≤τ

45<p

22 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

Experimental techniques: Embedding

Z → ττ background estimation

I select Z → µµ

I remove µ′s, take these as τ ’s

I simulate τ -decays and detectorresponse

I remerge with original event

I underlying event, pileup, hadronicactivity: taken from real data!

[GeV]ττMMC m

0 50 100 150 200 250 300

Events

/ 1

0 G

eV

0

50

100

150

200

250

300

µ µ →* γEmbedded Z/

MCτ τ →* γZ/

channelshadτµ + hadτe

­1L dt = 1.06 fb∫ = 7 TeV, s

ATLAS Preliminary

23 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

MSSM neutral h/H/A→ ττ : Limits on σ ×BR(φ→ ττ)

I assume 100%gluon-gluon-fusionor 100%b-associatedproduction(acceptancesslightly different)

I assume only oneresonance

I can placemodel-independentlimits on σ ×BR

eµ only

[GeV]φm

100 200 300 400 500 600)

[pb

]ττ

→φ B

R(

× φσ

95%

CL u

pp

er

limit o

n

­110

1

10

210

310 CLsφ →Observed gg

φ →Expected gg

CLsφObserved bb

φExpected bb

) theory ττ→SM

x BR(HSM

σ

­1 Ldt = 1.06 fb∫ = 7 TeV, s

channelµe

ATLAS Preliminary

`τhad only

[GeV]φm

100 200 300 400 500 600

) [p

b]

ττ →φ

BR

(× φ

σ95%

CL u

pp

er

limit o

n

­110

1

10

210

310 CLsφ →Observed gg

φ →Expected gg

CLsφObserved bb

φExpected bb

) theory ττ→SM

x BR(HSM

σ

­1 Ldt = 1.06 fb∫ = 7 TeV, s

channelshad

τµ + had

τe

ATLAS Preliminary

τhadτhad only

[GeV]φm

100 200 300 400 500 600

) [p

b]

ττ →φ

BR

(× φ

σ95%

CL u

pp

er

limit o

n

­110

1

10

210

310 CLsφ →Observed gg

φ →Expected gg

CLsφObserved bb

φExpected bb

) theory ττ→SM

x BR(HSM

σ

­1 Ldt = 1.06 fb∫ = 7 TeV, s

channelhad

τhad

τ

ATLAS Preliminary

combination

[GeV]φm

100 200 300 400 500 600

) [p

b]

ττ →φ

BR

(× φ

σ95%

CL u

pp

er

limit o

n

­110

1

10

210

310 CLsφ →Observed gg

φ →Expected gg

CLsφObserved bb

φExpected bb

) theory ττ→SM

x BR(HSM

σ

­1 Ldt = 1.06 fb∫ = 7 TeV, s

All channels

ATLAS Preliminary

24 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

MSSM neutral h/H/A→ ττ : Limits in (mA, tanβ)-plane

eµ only

[GeV]Am

100 150 200 250 300 350 400 450

βta

n

0

10

20

30

40

50

60 channelµe

­1 Ldt = 1.06 fb∫ = 7 TeV, s

>0µ, maxhm

ATLAS Preliminary

Observed CLs

Expected CLs

σ 1±σ 2±

LEP

`τhad only

[GeV]Am

100 150 200 250 300 350 400 450

βta

n

0

10

20

30

40

50

60 channels

hadτµ + hadτe

­1 Ldt = 1.06 fb∫ = 7 TeV, s

>0µ, maxhm

ATLAS Preliminary

Observed CLs

Expected CLs

σ 1±σ 2±

LEP

τhadτhad only

[GeV]Am

100 150 200 250 300 350 400 450

βta

n

0

10

20

30

40

50

60 channelhadτhadτ

­1 Ldt = 1.06 fb∫ = 7 TeV, s

>0µ, maxhm

ATLAS Preliminary

Observed CLs

Expected CLs

σ 1±σ 2±

LEP

combination

[GeV]Am

100 150 200 250 300 350 400 450

βta

n

0

10

20

30

40

50

60All channels

­1 Ldt = 1.06 fb∫ = 7 TeV, s

>0µ, maxhm

ATLAS Preliminary

Observed (hh only)

Observed (lh only)

Observed (emu only)

Observed CLs

Expected (hh only)

Expected (lh only)

Expected (emu only)

Expected CLs

LEP

25 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

MSSM neutral h/H/A→ ττ : Additional Plots

eµ embedding

effective [GeV]ττm

50 100 150 200 250

Eve

nts

/ 1

0 G

eV

0

100

200

300

400

500

600

µµ →* γEmbedded Z/

MCττ →* γZ/

PreliminaryATLAS

­1Ldt = 1.06 fb∫ = 7 TeV, s

channelµe

τhadτhad embedding

visible [GeV]ττm

0 50 100 150 200F

ractio

n o

f E

ve

nts

/ 1

0 G

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

µµ→*

γEmbedded Z/

MCττ→*

γZ/

-1Ldt = 1.06 fb∫ = 7 TeV, s

PreliminaryATLAS channelhad

τhad

τ

τhadτhad embedding

visible [GeV]ττm

0 50 100 150 200

Fra

ctio

n o

f E

ve

nts

/ 2

0 G

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

νµ→Embedded W

MCντ→W

-1Ldt = 1.06 fb∫ = 7 TeV, s

PreliminaryATLAS channelhad

τhad

τ

eµ: ∆φeµ

|µe

φ∆|

0 0.5 1 1.5 2 2.5 3

/25

πE

ve

nts

/

0

200

400

600

800

1000

1200

1400

Data 2011

=20β, tanττ →A(120)/h/H

) embeddedττ→*(γZ/

Others

Diboson

QCD multi­jet

& single­tttsyst.

PreliminaryATLAS

­1Ldt = 1.06 fb∫ = 7 TeV, s

channelµe

`τhad: pτT

[GeV]had

τT, p

0 20 40 60 80 100120140160180200

Eve

nts

/ 5

Ge

V

0

100

200

300

400

500

[GeV]had

τT, p

0 20 40 60 80 100120140160180200

Eve

nts

/ 5

Ge

V

0

100

200

300

400

500 Data 2011

=20β, tanττ→A(120)/H/h

) emb.(OS­SS)ττ→*(γZ/

Others(OS­SS)

W+jets (OS­SS)

Same Sign

stat.

channelshad

τµ + hadτe

­1 L = 1.06 fb∫ = 7TeV, s

ATLAS Preliminary

τhadτhad: pτT

[GeV]had,1

τT,p

0 20 40 60 80 100 120140160180

Eve

nts

/ 1

5 G

eV

0

20

40

60

80

100

120

140

160

180

200

[GeV]had,1

τT,p

0 20 40 60 80 100 120140160180

Eve

nts

/ 1

5 G

eV

0

20

40

60

80

100

120

140

160

180

200Data 2011

=20β, tanττ →A(200)/H/h

Multi­Jet

)ττ→*(γZ/

) + jetsντ→W(

Others

stat.

­1Ldt = 1.06 fb∫ = 7 TeV, s

PreliminaryATLAS

channelhad

τhad

τ

26 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

H+ → τhadν: Additional Plots

Multi-jet: fit to EmissT

[GeV]missTE

0 50 100 150 200 250 300

Eve

nts

/ 3

0 G

eV

0

5

10

15

20

25

30

35

Multi­jet

Other MC

Data 2011

­1 L dt = 1.03 fb∫

PreliminaryATLAS

Multi-jet: mT

[GeV]Tm

0 50 100 150 200 250 300 350 400

Eve

nts

/ 2

0 G

eV

0

2

4

6

8

10

12

14

16

Multi−jet

Other MC

Data 2011

­1 L dt = 1.03 fb∫

PreliminaryATLAS

Embedding: τ -Likelihood

TauLLH0 5 10 15 20 25

Arb

itra

ry u

nits

0

0.05

0.1

0.15

0.2

0.25

0.3Embedded data 2011

MC

­1 L dt=1.03 fb∫

ATLAS Preliminary

Embedding: pτT

[GeV]τ

Tp

0 50 100 150 200 250

Arb

itra

ry u

nits

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4Embedded data 2011

MC

­1 L dt=1.03 fb∫

ATLAS Preliminary

Embedding: EmissT

[GeV]miss

TE

0 50 100 150 200 250

Arb

itra

ry u

nits

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Embedded data 2011

MC

­1 L dt=1.03 fb∫

ATLAS Preliminary

Embedding: ptopT

[GeV]top

Tp

0 50 100150 200250300350400 450500

Arb

itra

ry u

nits

0

0.05

0.1

0.15

0.2

0.25

0.3

Embedded data 2011

MC

­1 L dt=1.03 fb∫

ATLAS Preliminary

27 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

1 lepton channel (H+ → τlepν,W → qq̄′)

I exactly one electron or muon

I ≥ 4 jets, exactly two b-tagged, high EmissT

I combinatorics:min

(χ2 =

(mjjb−mtop)2

σ2top

+(mjj−mW )2

σ2W

)< 5

I cannot rely on theory prediction ofσtt̄→bb̄W+W−

I cos θ∗l =2m2

bl

m2top−m

2W− 1

I constrain tt̄→ bb̄W+W− contribution(cannot rely on theory) fromcontrol region: cos θ∗l > −0.2

I signal region: cos θ∗l < −0.6,mWT < 60 GeV

I final discriminant: transverse mass mHT

(Phys. Rev. D 81 (2010) 055010)

I QCD background:data-driven estimate (fake rates method)

*θcos­1 ­0.5 0 0.5 1

Eve

nts

/ 0

.2

0

200

400

600

800

1000

1200

1400

*θcos­1 ­0.5 0 0.5 1

Eve

nts

/ 0

.2

0

200

400

600

800

1000

1200

1400

ATLAS Preliminary

= 130 GeV+H

m

) = 10%+

bH→Br(t

­1Ldt = 1.03 fb∫

)+

(with Htt

W+

(WttSingle top

Z + jets

W + jets

Diboson

QCD

Data 2011

[GeV]HTm

20 40 60 80 100 120 140 160 180

Eve

nts

/ 1

0 G

eV

0

20

40

60

80

100

120

[GeV]HTm

20 40 60 80 100 120 140 160 180

Eve

nts

/ 1

0 G

eV

0

20

40

60

80

100

120

ATLAS Preliminary

= 130 GeV+H

m

) = 10%+

bH→Br(t

­1Ldt = 1.03 fb∫

)+

(with Htt

W+

(WttSingle top

Z + jets

W + jets

Diboson

QCD

Data 2011

28 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

2 lepton channel (H+ → τlepν,W → `ν)

I two oppositely charged leptons

I ≥ 2 jets, exactly two b-tagged

I ee and µµ: Z-veto, EmissT > 40 GeV

I eµ: pµT + peT +∑Ejets

T > 130 GeV

I cannot rely on theory prediction ofσtt̄→bb̄W+W−

I constrain tt̄→ bb̄W+W− contributionfrom control region:

cos θ∗l > −0.4I Signal region:

cos θ∗l < −0.6

I final discriminant: generalised transversemass mH

T2 (Phys. Rev. D 81 (2010) 055010)

I QCD and W background: data-drivenestimate (fake rates method)

side+

*, Hθcos­1 ­0.5 0 0.5 1

Eve

nts

/ 0

.2

0

100

200

300

400

500

600

side+

*, Hθcos­1 ­0.5 0 0.5 1

Eve

nts

/ 0

.2

0

100

200

300

400

500

600

ATLAS Preliminary

= 130 GeV+H

m

) = 10%+

bH→Br(t

­1Ldt = 1.03 fb∫

)+

(with Htt

W+

(WttSingle top

Z + jets

Diboson

QCD & W

Data 2011

[GeV]HT2m

40 60 80 100 120 140 160 180 200

Eve

nts

/ 1

0 G

eV

0

50

100

150

200

250

[GeV]HT2m

40 60 80 100 120 140 160 180 200

Eve

nts

/ 1

0 G

eV

0

50

100

150

200

250

ATLAS Preliminary

= 130 GeV+H

m

) = 10%+

bH→Br(t

­1Ldt = 1.03 fb∫

)+

(with Htt

W+

(WttSingle top

Z + jets

Diboson

QCD & W

Data 2011

29 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

H+ → τlepν: Additional Plots

Limit for 1 lepton alone

[GeV]+H

m

90 100 110 120 130 140 150 160

+ b

H→

t 95%

C.L

. upper

bound o

n B

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Observed CLsExpected

σ 1±σ 2±

ATLAS Preliminary = 7 TeVsData 2011

­1Ldt = 1.03 fb∫

Limit for 2 lepton alone

[GeV]+H

m

90 100 110 120 130 140 150 160

+ b

H→

t 95%

C.L

. upper

bound o

n B

r

0

0.2

0.4

0.6

0.8

1

Observed CLsExpected

σ 1±σ 2±

ATLAS Preliminary = 7 TeVsData 2011

­1Ldt = 1.03 fb∫

30 / 19

h/A/H → ττ H+ → τhadν H+ → τlepν H+ → cs̄ H → γγ H++ → µ+µ+ a1 → µµ Summary

a1 → µµ: Additional Plots

Background-only fits

[GeV]µµm6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

Entr

ies/0

.05 G

eV

310

410

ATLAS Preliminary

= 7 TeVs

­1 L dt = 39 pb∫/d.o.f.: 1.72χ

[GeV]µµm9 9.5 10 10.5 11 11.5 12

Entr

ies/0

.05 G

eV

310

410

ATLAS Preliminary

= 7 TeVs

­1 L dt = 39 pb∫/d.o.f.: 1.32χ

31 / 19