Scintillation Detectors - Home | Jefferson LabFormalism/Electronics Timing Resolution Elton Smith...
Embed Size (px)
Transcript of Scintillation Detectors - Home | Jefferson LabFormalism/Electronics Timing Resolution Elton Smith...

Scintillation Detectors
IntroductionComponents
ScintillatorLight GuidesPhotomultiplier Tubes
Formalism/ElectronicsTiming Resolution
Elton Smith JLab 2006 Detector/Computer Summer Lecture Series

Elton Smith / Scintillation Detectors
B field ~ 5/3 T
R = 3m
L = ½ π R = 4.71 m
p = 0.3 B R = 1.5 GeV/c
tπ = L/βπc = 15.77 ns
tΚ = L/βΚc = 16.53 ns
∆tπK = 0.76 ns
Experiment basics
βπ = p/√p2+mπ2 = 0.9957
βΚ = p/√p2+mΚ2 = 0.9496
Particle Identification by time-of-flight (TOF) requiresMeasurements with accuracies of ~ 0.1 ns

Elton Smith / Scintillation Detectors
Measure the Flight Time between two Scintillators
400 cm
100 cm
300 cm
20 cmDisc
DiscTD
CStart
Stop
Particle Trajectory450 ns

Elton Smith / Scintillation Detectors
Measure the Flight Time between two Scintillators
400 cm
100 cm
300 cm
20 cmDisc
DiscTD
CStart
Stop
Particle Trajectory450 ns

Elton Smith / Scintillation Detectors
Propagation velocities
c = 30 cm/ns
vscint = c/n = 20 cm/ns
veff = 16 cm/ns
vpmt = 0.6 cm/ns
vcable = 20 cm/ns
∆t ~ 0.1 ns∆x ~ 3 cm

Elton Smith / Scintillation Detectors
TOF scintillators stacked for shipment

Elton Smith / Scintillation Detectors
CLAS detector open for repairs

Elton Smith / Scintillation Detectors
CLAS detector with FC pulled apart

Elton Smith / Scintillation Detectors
Start counter assembly

Elton Smith / Scintillation Detectors
Scintillator types
Organic
LiquidEconomicalmessy
SolidFast decay timelong attenuation lengthEmission spectra
Inorganic
AnthraceneUnused standard
NaI, CsIExcellent γ resolutionSlow decay time
BGOHigh density, compact

Elton Smith / Scintillation Detectors
Photocathode spectral response

Elton Smith / Scintillation Detectors
Scintillator thickness
Minimizing material vs. signal/background
CLAS TOF: 5 cm thickPenetrating particles (e.g. pions) loose 10 MeV
Start counter: 0.3 cm thickPenetrating particles loose 0.6 MeVPhotons, e+e− backgrounds ~ 1MeV contribute substantially to count rate
Thresholds may eliminate these in TOF

Elton Smith / Scintillation Detectors
Light guides
GoalsMatch (rectangular) scintillator to (circular) pmtOptimize light collection for applications
TypesPlasticAirNone“Winston” shapes

Elton Smith / Scintillation Detectors
Reflective/Refractive boundaries
acrylicScintillatorn = 1.58
PMT glassn = 1.5

Elton Smith / Scintillation Detectors
Reflective/Refractive boundaries
Air withreflectiveboundary
Scintillatorn = 1.58
PMT glassn = 1.5
%5411 2
−≈⎟⎠⎞
⎜⎝⎛+−
=nnRair
(reflectance at normal incidence)

Elton Smith / Scintillation Detectors
Reflective/Refractive boundaries
Scintillatorn = 1.58
PMT glassn = 1.5
air

Elton Smith / Scintillation Detectors
Reflective/Refractive boundaries
acrylicScintillatorn = 1.58
PMT glassn = 1.5
Large-angle ray lost
Acceptance of incident rays at fixed angle depends on position at the exit face of the scintillator

Elton Smith / Scintillation Detectors
Winston Cones - geometry

Elton Smith / Scintillation Detectors
Winston Cone - acceptance

Elton Smith / Scintillation Detectors
Photomultiplier tube, sensitive light meter Gain ~ 106 - 107
Electrodes
Photocathode Dynodes
Anode
γe−
56 AVP pmt

Elton Smith / Scintillation Detectors
Window Transmittance

Elton Smith / Scintillation Detectors
Voltage dividers
Equal voltage stepsMaximum gain
Progressive, higher voltage near anodeExcellent linearity, limited gain
Time optimized, higher voltage at cathodeGood gain, fast response
ZenersStabilize voltages independent of gain
Decoupling capacitors“reservoirs” of charge during pulsed operation

Elton Smith / Scintillation Detectors
Voltage Dividersd1 d2 d3 dNdN-1dN-2
akg
4 2.5 1 1 1 1 1 1 1 1 1 1
16.5
RL
+HV−HV
Equal Steps – Max Gain
4 2.5 1 1 1 1 1 1 1.4 1.6 3 2.5
21
RL
Intermediate
6 2.5 1 1.25 1.5 1.5 1.75 2.5 3.5 4.5 8 10
44
RL
Progressive
Timing Linearity

Elton Smith / Scintillation Detectors
VoltageDivider
Active componentsto minimize changesto timing and rate capability with HV
Capacitors for increasedlinearity in pulsed applications

Elton Smith / Scintillation Detectors
High voltage
Positive (cathode at ground)low noise, capacitative coupling
NegativeAnode at ground (no HV on signal)
No (high) voltageCockcroft-Walton bases

Elton Smith / Scintillation Detectors
Effect of magnetic field on pmt

Elton Smith / Scintillation Detectors
Housing

Elton Smith / Scintillation Detectors
Compact UNH divider design

Elton Smith / Scintillation Detectors
Electrostatics near cathode at −HV
Stable performance with negative high voltage is achieved byEliminating potential gradients in the vicinity of the photocathode.The electrostatic shielding and the can of the crystal are bothMaintained at cathode potential by this arrangement.

Elton Smith / Scintillation Detectors
Dark counts
Solid : Sea level
Dashed: 30 m underground
Thermal Noise
After-pulsing andGlass radioactivity
Cosmic rays

Elton Smith / Scintillation Detectors
Signal for passing tracks

Elton Smith / Scintillation Detectors
Single photoelectron signal

Elton Smith / Scintillation Detectors
Pulse distortion in cable

Elton Smith / Scintillation Detectors
Electronics
trigger
dynode
Measure timeMeasure pulse height
anode

Elton Smith / Scintillation Detectors
Time-walk corrections

Elton Smith / Scintillation Detectors
Formalism: Measure time and position
PL PR
TL TRX=0 XX=−L/2 X=+L/2
effLL vxTT /0 += effRR vxTT /0 −=
)()( 0021
21
RLRLave TTTTT +=+= Mean is independent of x!
[ ] )(2
)()(2
00RL
effRLRL
eff TTv
TTTTv
x −→−−−=

Elton Smith / Scintillation Detectors
From single-photoelectron timing to counter resolutionThe uncertainty in determining the passage of a particlethrough a scintillator has a statistical component, dependingon the number of photoelectrons Npe that create the pulse.
)2/exp()2/()(
2212
0 λσσ
σσLNLns
pe
PTOF −⋅
⋅++= 1000≈peN
ns062.00 =σ Intrinsic timing of electronic circuits
ns1.21 =σ
cmnsP /0118.0=σ
)15(36.0134 counterscmLcm ⋅+=λ)22(430 counterscmcm=λ
Combined scintillator and pmt response
Average path length variations in scintillator
SinglePhotoelectronResponse }
Note: Parameters for CLAS

Elton Smith / Scintillation Detectors
Average time resolution
CLAS in Hall B

Elton Smith / Scintillation Detectors
Formalism: Measure energy loss
PL PR
TL TRX=0 XX=−L/2 X=+L/2
λ/0 xLL ePP −= λ/0 x
RR ePP =
00RLRL PPPPEnergy ⋅=⋅=
Geometric mean is independent of x!

Elton Smith / Scintillation Detectors
Energy deposited in scintillator

Elton Smith / Scintillation Detectors
UncertaintiesTiming
Assume that one pmt measures a time with uncertainty δt
Mass Resolution
2~
21 22 tttt RLave
δδδδ +=
2~)
21( 22 tvttvx effRLeff
δδδδ ⋅+⋅=
γEm = 2
2
2222 1)1( pEm ⎟
⎟⎠
⎞⎜⎜⎝
⎛ −=−=→
βββ
224
2
⎟⎟⎠
⎞⎜⎜⎝
⎛+⎟⎟
⎠
⎞⎜⎜⎝
⎛=⎟
⎠⎞
⎜⎝⎛
pp
mm δ
βδβγδ

Elton Smith / Scintillation Detectors
Integral magnetic shield

Elton Smith / Scintillation Detectors
Example: Kaon mass resolution by TOF
cGeVPK /1= GeVEK 116.11495.0 2 =+=
896.0=⎟⎟⎠
⎞⎜⎜⎝
⎛=
K
KK E
Pβ 26.2=⎟⎟
⎠
⎞⎜⎜⎝
⎛=
K
KK m
Eγ
For a flight path of d = 500 cm, nsnscm
cmt 6.18/30896.0
500=⎟⎟
⎠
⎞⎜⎜⎝
⎛⋅
=
nst 15.0=δ 01.0=⎟⎟⎠
⎞⎜⎜⎝
⎛ppδ
Assume
( ) 222
42
042.001.06.18
15.026.2 =+⎟⎠⎞
⎜⎝⎛=⎟
⎠⎞
⎜⎝⎛
mmδ MeVmK 21~δ→
⎟⎟⎠
⎞⎜⎜⎝
⎛∞⎯⎯⎯ →⎯⎟
⎠⎞
⎜⎝⎛
∞→ βδβδ
γfixedfor
mm
2Note:

Elton Smith / Scintillation Detectors
Velocity vs. momentum
π+
K+
p

Elton Smith / Scintillation Detectors
Summary
Scintillator counters have a few simple components
Systems are built out of these countersFast response allows for accurate timing
The time resolution required for particle identification is the result of the time response of individual components scaled by √Npe

Elton Smith / Scintillation Detectors
Magnetic fields