Scintillation Detectors for Space Radiation and Dosimetry -

16
August 2012 1 Scintillation Detectors for Space Radiation and Dosimetry Goal: Neutron Dosimeter James Christian Instrument Research & Development E.B. Johnson, C.M. Whitney, X.J. Chen, S.M. Vogel, E.V.D. van Loef, R. Hawrami, J.Glodo, L.S. Pandian, K.S. Shah, T.H. Prettyman, E. Benton SBIR PSI OSU

Transcript of Scintillation Detectors for Space Radiation and Dosimetry -

August 2012

1

Scintillation Detectors for Space Radiation and Dosimetry Goal: Neutron Dosimeter

James Christian

Instrument Research& Development

E.B. Johnson, C.M. Whitney, X.J. Chen, S.M. Vogel, E.V.D. van Loef, R. Hawrami, J.Glodo, L.S. Pandian, K.S. Shah, T.H. Prettyman, E. Benton

SBIR

PSI OSU

2

Compact Dosimeter Concept

• Scintillation detector and SSPM • Simplistic

– Anti-coincidence (distinguished ions from n, γ) • Scintillation material capabilities

Radiation

Optical Flash

Scintillation Material

SSPM

IC Components Dosimeter Chip

• Neutron dose (2°) important, lots of “stuff”

3

Dose • Absorbed dose (TID) • Human-equivalent dose: Tissue and Q (quality factor)

– Q: “legislated” relative biological effectiveness (RBE) for cancer endpoint: depends on E and LET

• Displacement Damage Dose (NIEL – non-ion. E loss)

• Identify Particle Type • Linear Energy Transfer (LET = ) or E • (Dose rate)

Deq = RBE × DR → Specific

10-4 10-3 10-2 10-1 100 101 102 103

Particle Energy (MeV)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Si N

IEL

(MeV

cm2 /g

)

ProtonElectronNeutron

*Td = 21 eV

Si

S. Messenger, SPENVIS Workshop 2005

BLAKELY, E.A., et al., Adv. Radiat. Biol. 11 (1984) 195–389.

ICRP 60 (1991a)

dEdx

4

Interactions with HnCm Scintillator

• DPA is a “new” H18C26 material (~tissue density) • Light ∝ Absorbed Dose TID: Birks legacy (S & kB quenching) • Recoil proton (in plastic) related to neutron energy

p+ n γ

p+ (in plastic)

δ-rays

CH

CH3

CH2

n

PVT (EJ200) DPA

2

dEdL dxdx dE dE1

dx dx

S

kB C

⋅ =

+ ⋅ − ⋅

5

Proportionality with gammas: S-term

• S-term related to gamma ray energy resolution • ~15 k photons per MeV (bright – as high as 20)

0 200 400 6000.0

0.5

1.0

Rela

tive

Ligh

t Yie

ld

Energy (keV)

EJ200: ~9 phot/keV DPA: ~15 phot/keV

6

Characterize kB-term (protons) dEdx

• kB larger in DPA than EJ200 (C-term fixed) – More δ-ray/ionization quenching – Deviation not analysis (Experimental factors)

0 5 10 15 200

5

10

15

20

52MeV70

MeV

DPA

kB 0.011 cm/MeVC 7.9E-6 (cm/MeV)2

∆L

/∆x/

S (M

eV/c

m)

⟨dE/dx⟩ (MeV/cm)

EJ200

kB 0.026 cm/MeVC 6.4E-6 (cm/MeV)2

187MeV

50 100 150 20001234567

kB 0.026 0.011 cm/MeVC 6.4E-6 7.9E-6 (cm/MeV)2

L/S

(MeV

)

Ein (MeV)

0.5 cm DPA Fit 0.3 cm EJ200 Calculated

DPA EJ200

2

dEdx

dE dE1dx dx

i

i

i i

S

kB C

+ ⋅ + ⋅

Sum

7

DPA emission time characteristics

• Distinguishes gammas from neutrons

0 200 400 600 800 1000

10-3

10-2

10-1

100

T ~ 25C

DPA #2

R6233SBA(2) / 1100 V / CAEN

neutron gamma windows

coun

ts, a

rb. u

nits

time, ns

window 1 window 2

8

DPA neutron distinction

• Different sources • Dark noise • Effect of DDD

0 10 20 30 40 50 60 70 80

0.0

2.0x10-4

4.0x10-4

6.0x10-4

8.0x10-4

dark

cur

rent

(A)

time (days)

30 V reverse bias

10 rad100 rad

1 krad

10 krad

100 krad

PMT (Cf) SSPM (AmBe)

w2/

w1

Neutrons

Gamma (w2-

w1)

/ttl

9

DPA population plot

• Ideal beam measurement - Optimistic (avg. paths) • DPA needs anti-coincidence

increasing LET

10

CLYC Scintillator Cs2LiYCl6

• Photon yield ~20 photons/keV • CLYC proportional (good gamma E-resolution)

6Li: 6Li + 1n → 3H + 4α 4.78 MeV 940 Barns 35Cl: 35Cl + 1n → 35S 0.62 MeV <1 Barn

10 100 1000

0.90

0.95

1.00

1.05

1.10

1.15 CLYC NaI(Tl)

rela

tive

light

yie

ld

energy, keV0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.50

1

2

3AmBe spectrum

137Cs spectrum662 keV

3.4 MeV

inte

nsity

, arb

. uni

tsenergy, MeV

0 200 400 600 8000.0

0.5

1.0

1.5 CLYC : ∆E ~ 3.9% NaI(Tl) : ∆E ~ 7%

137Cs Spectra

inte

nsity

, arb

. uni

ts

energy, keV

11

CLYC emission time characteristics

• Distinguish gammas from thermal neutrons (3-He) • No p+ recoil, detect fast neutrons with 35-Cl

0 200 400 6000.0

0.2

0.4

0.6

0.8

1.0

1.2

gamma

neutron

window 2window 1

neutron gamma windows

coun

ts, a

rb. u

nits

time, ns

100 200 300 400 500100

200

300

400

500

CLYC:Ce

gammas

neutrons

wind

ow 2

/ wi

ndow

1

0 100 200 300 400 5000

10k

20k

30k

40k

neut

ron

2614

keV

511

keV

1274

keV

coun

tsfull integral

100 101 102 103

neutrons

gammas

FOM=4.82

counts

12

Measuring neutron energy with CLYC

200 400 600 800 1000 0 100 200 300 400 500 600

Channel

Counts

893 keV 1202 keV 1508 keV 1913 keV

0 500 1000 1500 2000 0 200 400 600

Energy (keV)

Channel

• 35-Cl (n,p) reaction • Fast Neutron Spectroscopy

13

Summary

• Interesting Scintillation Materials – Thermal and fast neutron – Distinguish p+, n, & γ – Beam results optimistic

• Compact Neutron Dosimeters and Spectrometers – Anti-coincident shield – Pulse-shape discrimination (electronics) – SSPM detectors: compact, high gain

14

15

Achievements Tested CLLBC Dosimeters at PNNL:

• Category 1 – isotopes passed, x-ray failed • Category 2 – isotopes passed, x-ray “close”

Designed Category-1 x-ray detector Received and tested new dosimeter chip Designed new compact version Developing HDD, SDD, assembly,

testing, and QC protocols: ISO 9001 compliance

Facilities: Constructed x-ray room, crystal preparation station, dry glove box, environmental chamber automation.

Met with Stan Mavrogianis and Eric Daxon at HPS meeting

-0.2 0.0 0.20.0

0.2

0.4

2b

2c

1

Devia

tion

Bias

ANSI Category (corrected)

16

Space Environment

• Neutron dose important, lots of background

10-3 10-2 10-1 1 10 102 103 10410-610-510-410-310-210-1

110

102

Parti

cles/

(cm

2 ·s·M

eV)

Energy (MeV)

Gamma Neutron Proton

• Galactic Cosmic Rays (GCR), Solar Protons and Secondary Emission (gamma-rays, neutrons, and others)

p+ (GCR) p+

δRδR

Simulation