Scintillation Detectors for Space Radiation and Dosimetry -

of 16 /16
August 2012 1 Scintillation Detectors for Space Radiation and Dosimetry Goal: Neutron Dosimeter James Christian Instrument Research & Development E.B. Johnson, C.M. Whitney, X.J. Chen, S.M. Vogel, E.V.D. van Loef, R. Hawrami, J.Glodo, L.S. Pandian, K.S. Shah, T.H. Prettyman, E. Benton SBIR PSI OSU

Embed Size (px)

Transcript of Scintillation Detectors for Space Radiation and Dosimetry -

Slide 1James Christian
Instrument Research & Development
E.B. Johnson, C.M. Whitney, X.J. Chen, S.M. Vogel, E.V.D. van Loef, R. Hawrami, J.Glodo, L.S. Pandian, K.S. Shah, T.H. Prettyman, E. Benton
SBIR
– Anti-coincidence (distinguished ions from n, γ) • Scintillation material capabilities
Radiation
3
Dose • Absorbed dose (TID) • Human-equivalent dose: Tissue and Q (quality factor)
– Q: “legislated” relative biological effectiveness (RBE) for cancer endpoint: depends on E and LET
• Displacement Damage Dose (NIEL – non-ion. E loss)
• Identify Particle Type • Linear Energy Transfer (LET = ) or E • (Dose rate)
Deq = RBE × DR → Specific
Particle Energy (MeV)
S. Messenger, SPENVIS Workshop 2005
BLAKELY, E.A., et al., Adv. Radiat. Biol. 11 (1984) 195–389.
ICRP 60 (1991a)
Interactions with HnCm Scintillator
• DPA is a “new” H18C26 material (~tissue density) • Light ∝ Absorbed Dose TID: Birks legacy (S & kB quenching) • Recoil proton (in plastic) related to neutron energy
p+ n γ
p+ (in plastic)
dx dx
Proportionality with gammas: S-term
• S-term related to gamma ray energy resolution • ~15 k photons per MeV (bright – as high as 20)
0 200 400 600 0.0
0.5
1.0
6
Characterize kB-term (protons) dE dx
• kB larger in DPA than EJ200 (C-term fixed) – More δ-ray/ionization quenching – Deviation not analysis (Experimental factors)
0 5 10 15 20 0
5
10
15
20
L
/ x/
187 MeV
50 100 150 200 0 1 2 3 4 5 6 7
kB 0.026 0.011 cm/MeV C 6.4E-6 7.9E-6 (cm/MeV)2
L/ S
(M eV
DPA EJ200
10-3
10-2
10-1
100
0 10 20 30 40 50 60 70 80
0.0
2.0x10-4
4.0x10-4
6.0x10-4
8.0x10-4
increasing LET
• Photon yield ~20 photons/keV • CLYC proportional (good gamma E-resolution)
6Li: 6Li + 1n → 3H + 4α 4.78 MeV 940 Barns 35Cl: 35Cl + 1n → 35S 0.62 MeV <1 Barn
10 100 1000
ld
energy, keV 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0
1
2
0.5
1.0
137Cs Spectra
in te
ns ity
, a rb
. u ni
CLYC emission time characteristics
• Distinguish gammas from thermal neutrons (3-He) • No p+ recoil, detect fast neutrons with 35-Cl
0 200 400 600 0.0
0.2
0.4
0.6
0.8
1.0
1.2
gamma
neutron
200
300
400
500
CLYC:Ce
gammas
neutrons
10k
20k
30k
40k
Measuring neutron energy with CLYC
200 400 600 800 1000 0 100 200 300 400 500 600
Channel
893 keV 1202 keV 1508 keV 1913 keV
0 500 1000 1500 2000 0 200 400 600
Energy (keV)
• 35-Cl (n,p) reaction • Fast Neutron Spectroscopy
13
Summary
• Interesting Scintillation Materials – Thermal and fast neutron – Distinguish p+, n, & γ – Beam results optimistic
• Compact Neutron Dosimeters and Spectrometers – Anti-coincident shield – Pulse-shape discrimination (electronics) – SSPM detectors: compact, high gain
14
15
Achievements Tested CLLBC Dosimeters at PNNL:
• Category 1 – isotopes passed, x-ray failed • Category 2 – isotopes passed, x-ray “close”
Designed Category-1 x-ray detector Received and tested new dosimeter chip Designed new compact version Developing HDD, SDD, assembly,
testing, and QC protocols: ISO 9001 compliance
Facilities: Constructed x-ray room, crystal preparation station, dry glove box, environmental chamber automation.
Met with Stan Mavrogianis and Eric Daxon at HPS meeting
-0.2 0.0 0.2 0.0
• Neutron dose important, lots of background
10-3 10-2 10-1 1 10 102 103 104 10-6 10-5 10-4 10-3 10-2 10-1
1 10
• Galactic Cosmic Rays (GCR), Solar Protons and Secondary Emission (gamma-rays, neutrons, and others)
p+ (GCR) p+
Summary