runcatedT Hilbert Space Approach for the 1+1D 4...

48
ϕ ϕ

Transcript of runcatedT Hilbert Space Approach for the 1+1D 4...

Page 1: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Truncated Hilbert Space Approach for the 1+1D ϕ4

theory

Supervisor: Zoltán Bajnok

Márton Lájer

ELFT Particle Physics Seminar, 2016

Márton Lájer THSA for ϕ4 model

Page 2: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Outline

1 De�nition of model

2 Finite size physics

3 Numerics and data evaluation

4 Results

Márton Lájer THSA for ϕ4 model

Page 3: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Recent works

A. Coser, G. Mussardo et al., Truncated Conformal Space

Approach for 2D Landau-Ginzburg Theories,arXiv:1409.1494v2 (2014)

S. Rychkov, L. G. Vitale, A Hamiltonian Truncation Study of

the φ4 Theory in Two Dimensions, arXiv:1412.3460 (2014)

S. Rychkov, L. G. Vitale, A Hamiltonian Truncation Study of

the φ4 Theory in Two Dimensions II: The Z_2-Broken Phase

and the Chang Duality , arXiv:1512.00493 (2015)

J. Elias-Miro, M. Montull, M. Riembau, The renormalized

Hamiltonian truncation method in the large ET expansion,arxiv:1512.05746 (2015)

Z. Bajnok, M. Lajer, Truncated Hilbert space approach

to the 2d ϕ4 theory , arXiv:1512.06901 (2015)

Márton Lájer THSA for ϕ4 model

Page 4: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Classical action

S =∫d2xL (x), L (x) =

1

2∂µϕ(x)∂

µϕ(x)−V (ϕ(x))

V (ϕ) = m2

(−12

ϕ2 +

g

6ϕ4

)=−m

2

2ϕ2 +

λ

4!ϕ4

=−g2ϕ2 +g4ϕ

4

g =6g4m2

4m2

1+1 dimensions, h = c = 1

Symmetries of S : Poincaré, internal Z2, spatial parity

GS breaks Z2 parity

Márton Lájer THSA for ϕ4 model

Page 5: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Fluctuations and kinks

Elementary �uctuations around minima:

m0 =√2m, g =

12g4m2

0

Classical kink/antikink (K/K )solution:

φ± =±

√3

2gtanh

(m0x

2

), M0 =

m0

g

(anti)kink nonperturbative, disjunct topological sectors

KK bound state (breather) classically not stable

Semiclassics: quantum �uctuations around cl. kink background

SC normal ordering: wrt. free boson with m0 mass, in�nitevolume

Márton Lájer THSA for ϕ4 model

Page 6: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Semiclassics

Relevant quantities: masses and S-matrix

�rst SC correction to kink mass:

Msc = M0−m0c +O (g) , c =3

2π− 1

4√3

breathers:

mn = 2Msc sin

(n

ζ

2

), ζ =

g

1−gc

Stability against m1: mn < 2m1, SC: always true for m2, neverfor m3

Mussardo: there are at most two stable breathers

Márton Lájer THSA for ϕ4 model

Page 7: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Semiclassics

B1 S-matrix below two-particle treshold: unitarity, crossing

S (θ) = S (−θ)−1 = S (iπ−θ)

where θ is the rapidity di�erence,

k1 =−k2 = m1 sinhθ

2

Simplest nontrivial solution:

S (θ , iα) =sinhθ + i sinα

sinhθ − i sinα

Pole at m2 = 2m1 cosα

2

Semiclassics:

m2 = 2m1 cosζ

2=⇒ α = ζ

Márton Lájer THSA for ϕ4 model

Page 8: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Canonical Quantization

Hamiltonian for �nite volume L:

H =

L∫0

H dx , H =1

2(∂tϕ)2+

1

2

(∂xϕ

2)− 1

2m2

ϕ2+

g

6m2

ϕ4

Boundary conditions:

ϕ (x) =±ϕ (x +L)

Quantization of free boson:

ϕ (x , t) = ∑n

1√2ωnL

(ane−iωnt+iknx +a†

neiωnt−iknx

)[an,am] =

[a†n,a

†m

]= 0 ;

[an,a

†m

]= δn,m

ωn =√

µ2 +k2n ; kn =2π

Ln

PBC: n integer, ABC: n half-integerMárton Lájer THSA for ϕ4 model

Page 9: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Normal ordering

wrt a mass scale µ and volume L:

H = H µ,L0

+g0 (µ,L) +g2 (µ,L) : ϕ2 :µ,L +g4 (µ,L) : ϕ

4 :µ,L

vacuum is annihilated by all anFree Hamiltonian:

Hµ,L0

=

L∫0

: (∂tϕ)2+(∂xϕ)2+µ2ϕ2 : dx+E±

0(µ,L) = ∑

n

ωna†nan+E±

0

GS energy and energy density in�nite for non-renormalizedHamiltonianComparing renormalization schemes:

E±0

(µ,L) = µ

∞∫−∞

2πcoshθ log

(1∓ e−mLcoshθ

)Márton Lájer THSA for ϕ4 model

Page 10: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Normal ordering

Relate ::µ,L normal ordering to ::µ ′,L′ :

: ϕ2 :µ ′,L′ =: ϕ

2 :µ,L +∆Z

: ϕ4 :µ ′,L′ =: ϕ

4 :µ,L +6∆Z : ϕ2 :µ,L +3(∆Z )2 ,

∆Z = Z (µ,L)−Z(µ′,L′), Z (µ,L) = ∑

|n|<N

1

2ωnL

Semiclassical scheme: L′→ ∞, µ ′ = m0, perturbationparameters are de�ned here:

g0 (m0,∞) = 0, g2 (m0,∞) =−34m2

0, g4 (m0,∞) =gm2

0

12

Márton Lájer THSA for ϕ4 model

Page 11: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Normal ordering

Changing the scheme from ::m0,∞ to ::m,L,

g0 (m,L) = m2

(g

2z2± (mL)− z± (mL)− ln2

)g2 (m,L) = m2

(g z2± (mL)−1

)g4 (m,L) =

m2g

6

where z± = z±+ ln2

4πfor PBC (+) and ABC (−) with

z+ (mL) =

∞∫0

π

(emLcoshθ −1

)−1z− (mL) = 2z+ (2mL)− z+ (mL)

Márton Lájer THSA for ϕ4 model

Page 12: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Finite size e�ects

�Finite volume�: space is compacti�ed via ϕ (x +L) =±ϕ (x)

Lüscher:

�nite volume spectrum of H⇐⇒ in�nite volume physical quantities

Leading order: �Bethe-Yang� corrections

Polynomial in L−1

due to momentum quantization (BC)

�Lüscher� corrections

exponentially smalldue to vacuum polarization (virtual particles)

Márton Lájer THSA for ϕ4 model

Page 13: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

In�nite volume data

Parameters:

masses: Ei =√m2

i +p2

Ei (θ) = mi cosh(θ) , pi (θ) = mi sinh(θ)

below a kinematical treshold θt only elastic processes →integrable framework applicabletwo-particle S-matrices: S11, S12, S22, Sk1, Sk2, Skk

general form restricted by unitarity, analicity, crossing, physical

poles and branch cuts

e.g. S11(θ): B1

2

)B1

(− θ

2

)→ B1

(− θ

2

)B1

2

)S11(θ) must have a pole corresponding to B2 if B2 is in the

spectrum

Márton Lájer THSA for ϕ4 model

Page 14: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

2-particle S-matrices

General form:

Saa(θ) = S(θ , iα)exp

{−∫

θt

dθ ′

2π iρ(θ

′) logS(θ′,θ)

}θt : kinematic treshold rapidity for inelastic processes (e.g.B1B1→ B1B2)

bound states appear as poles, e.g. for S11 (θ):

S(θ ,x) =sinhθ + i sinα

sinhθ − i sinα

m2 = 2m1 cosα

2

Measuring ρ (θ) would be very interesting but di�cult

Márton Lájer THSA for ϕ4 model

Page 15: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

2-particle S-matrices

kink and antikink: mass M degenerate due to Z2 symmetry

Mussardo: Skk also diagonal, unitarity and crossing belowtreshold:

Skk(θ) = Skk(iπ−θ) = Skk(−θ)−1 = Skk(θ)

B1, B2 are kk bound states with fusion angles β1, β2

m1,2 = 2M cosβ1,2

2

if M <m1, and both B1 and B2 present:

Skk(θ) =−S(θ , iβ1)S(θ , iβ2)Sexp(θ)

Márton Lájer THSA for ϕ4 model

Page 16: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

2-particle S-matrices

kink-B sector has topological charge ⇒unitarity/crossingbelow kB2 treshold:

Sk1(θ) = S1k(iπ−θ) = S1k(−θ)−1 = S1k(θ) = S

1k(θ)

pole at i β

2:

Sk1(θ) = S

(θ , i

β1

2

)Fusion provides β1:

Sk1(θ + iβ1

2)Sk1(θ − i

β1

2) = S11(θ)

β1 = π−α m1 = 2M sinα

2

we know that m2 = 2m1 cosα

2=⇒ β2 = π−2α

Márton Lájer THSA for ϕ4 model

Page 17: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Polynomial corrections

It should be decided whether the previous bootstrap-basedapproximations are useful

Momentum quantization (Bethe-Yang):

Volume large compared to particle numberParticles move freely most of the timeParticle wave functions pick up phase upon interacting

e ipjL ∏n:n 6=j

Sjn(θj −θn) =±1, E (L) =N

∑n=1

mn coshθn(L)

± depends on periodic/antiperiodic nature of wave function

exact for integrable models; here approximate for certainkinematical domains

Márton Lájer THSA for ϕ4 model

Page 18: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Exponential corrections

virtual processes (Lüscher)

Leading order for vacuum:

lightest (massm) particle-antiparticle pair appears, travelsaround the world and annihilate

E0(L) =−m∫

−∞

2πcoshθ e−mLcoshθ

Leading order for 1-particle state a:

F-term: virtual pair bb from vacuum → scattering ona→annihilate:

∆Fma =−mb

∫∞

−∞

2πcoshθ (Sba(iπ/2+ θ)−1)e−mbLcoshθ

µ-term: residue of F-term at pole bound state c:

∆µma =−∑b,c

θ(m2

a−|m2

b−m2

c |)µcab(−i)ResSab(θ)e−µc

abL

Márton Lájer THSA for ϕ4 model

Page 19: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

THSA

We choose a free massive Fock basis at volume mL0 = 1, massµ

m= 1

We truncate the H -space at some energy cuto� Emax wrt tofree theorydimensionless parameters:

H

m= h ; mL = l ; ωn = mωn = m

√1+

4π2n2

l2

Hamiltonian:

h = h0 +∫ L

0

mdx[g2(l) :φ

2 : +g4 :φ4 : +g0(l)

]h0 = ∑

n

ωn(l)a+n an + e±

0(l), e±

0(l) = E±

0(mL)/m

2 dimensionless parameters: g , l . m sets energy scaleWe solve hψ = Eψ numerically in truncated basis

Márton Lájer THSA for ϕ4 model

Page 20: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Mini Hilbert Space

Periodic boundary condition: �mini superspace�

H = H mini⊗H

IR (zero momentum) mode has special role in low-lyingspectrum

φ(x ,0) = φ(x ,0) + φ0 ; φ0 =1√2l

(a0 +a+0

)

Mini Hamiltonian: anharmonic oscillator (QM)

hmini = ω0 a+0a0 +

1

2g2(l) : (a0 +a+

0)2 : +

1

4lg4 : (a0 +a+

0)4 :

h= hmini + h0+∫ L

0

mdx[g0(l) + g2(l) : φ

2 : +g4(: φ

4 : +4 : φ3 : φ0 +6 : φ

2 : φ20

)]where:

h0 = h0−hmini0 ; hmini

0 = ω0 a+0a0

Márton Lájer THSA for ϕ4 model

Page 21: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Technical implementation

Has to �nd lowest eigenvalues for large, symmetric (real)sparse matrices

Great iterative, general purpose eigensolver: PRIMME

do not diagonalize whole matrix, only �rst O(10) eigenpairsUse a re�ned version of Jacobi-Davidson method(�JDQMR-ETOL�)

C++ program to calculate matrix elements

can handle up to 200000 dimensional problems on single 32-bitPCfurther scaling-up possible

Márton Lájer THSA for ϕ4 model

Page 22: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Technical implementation

periodic BC:

generate basis at �x mL0 = 1compute lowest eigenvalues of hmini (L)obtain matrix elements of H(L) as a direct product; use exacteigenstates in the minimal basiscompute lowest eigenpairs of H(L)perform this to various energy truncations and volumes

antiperiodic BC:

generate basis at �x mL0 = 1obtain matrix elements of H(L) → eigenpairs

Márton Lájer THSA for ϕ4 model

Page 23: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Technical implementation

basis generating volume: the spectrum is close to theconformal spectrum, energy approx. measurable in 2π

mLunits

mode (a+n )jn contributes to this �conformal energy� as jn|n|.

Energy cuto�s introduced as integer multiples of this unit,taken between 14 and 26 (oscillator content remains same)

Volume dependence measured from l = 1 to l = 30, usuallyinteger steps

minimal space contains 2000 basis vectors. We keep the lowest6 �exact� minimal eigenstates

symmetries help: we work in zero-momentum sector.Even/odd particle number sectors treated separately. Currentlynot using space parity.

Márton Lájer THSA for ϕ4 model

Page 24: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Extrapolation in energy cuto�

Rychkov et al.: leading correction to H due to truncation:

∆H =− g2

e2max

{(c1 log

2 emax + c2 logemax + c3

)V0

+(c4 logemax + c5)V2 + c6V4}

c1 . . .c6 known

we extrapolate (�t) using the leading ecut dependence:

E (ecut) = a+blog2 ecute2cut

+ clogecute2cut

obtanining an error:

E (ecut) = a+blog2 ecute2cut

Márton Lájer THSA for ϕ4 model

Page 25: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Raw spectrum at g = 1.2

5 10 15 20 25 30mL

-10

-5

5

10

E�m

Márton Lájer THSA for ϕ4 model

Page 26: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

GS energy density extrapolation

5 10 15 20 25 30mL

-6.268

-6.266

-6.264

-6.262

e0�l

The energy density obtained at l = 7 is indicated with a dashed line.

Márton Lájer THSA for ϕ4 model

Page 27: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

GS energy density extrapolation

100 120 140 160Ecut�m

-62.659

-62.658

-62.657

-62.656

-62.655

-62.654

E0�m

Data points as a function of the truncation energy together withthe �tted function for the ground-state energy density at g = 0.06and volume l = 10.

Márton Lájer THSA for ϕ4 model

Page 28: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Low-lying spectrum at g = 0.06

5 10 15 20 25 30mL

2

4

6

8

E�m

Even particle number sector; vacuum energy density at l = 7substracted

Márton Lájer THSA for ϕ4 model

Page 29: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

BY description of B2

5 10 15 20 25 30mL

2.790

2.795

2.800

E2 - E0

m

Imaginary BY description of B2 at g = 0.06 with leading �nite sizecorrection (gray). Fitting sensitive to α , hereα = 0.06.

Márton Lájer THSA for ϕ4 model

Page 30: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Low-lying spectra with BY lines

5 10 15 20 25 30mL

2

4

6

E�m

5 10 15 20 25 30mL

1

2

3

4

5

6

E�m

for g = 0.06 (left) and g = 0.6 (right)

Márton Lájer THSA for ϕ4 model

Page 31: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

coupling dependence

0.5 1.0 1.5g

1

2

3

Α; m1�m; m2�m; 2M�m

m1 (red), m2 (green), together with the scattering parameter α ,(blue) . 2M shown in gray

Márton Lájer THSA for ϕ4 model

Page 32: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

kk Phase Shifts

0.5 1.0 1.5 2.0 2.5 3.0Θ

2

4

6

8

0 1 2 3 4Θ0

2

4

6

8

10∆

left: g = 1.8, right: g = 2.4. Obtained from BY equation fordi�erent lines

Márton Lájer THSA for ϕ4 model

Page 33: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

kk Phase Shifts

0.5 1.0 1.5 2.0 2.5 3.0

2

4

6

8

0 5 10 15 20 25 30mL0

1

2

3

4

5E�m

for g = 1.8. Fitted function: δ (θ) = aθ −bθ2 + cθ3

Márton Lájer THSA for ϕ4 model

Page 34: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Exp correction to E0

2 4 6 8 10mL

-0.025

-0.020

-0.015

-0.010

-0.005

E0�m

leading exponential correction to GS energy at g = 0.06

Márton Lájer THSA for ϕ4 model

Page 35: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Exp correction to B1

0 5 10 15 20 25 30mL

1.390

1.395

1.400

1.405HE1-E0L�m

at g = 0.06. Blue dots: B1 energies from the rescaled TCSAspectrum of the sine-Gordon theory at pπ = 0.06

Márton Lájer THSA for ϕ4 model

Page 36: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Comparison with sG TCSA

5 10 15 20 25 30mL

3

4

5

6

7

8E�m

sG data: pπ = 0.06 and ecut = 20; φ4 data: g = 0.06. The φ4 dataare indicated by solid lines. All data are normalized wrt. thecorresponding ground state energies.

Márton Lájer THSA for ϕ4 model

Page 37: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

vacuum splitting

2 3 4 5 6mL

0.01

0.02

0.03

0.04

0.05

0.06

0.07

DE 0�m

3 4 5 6mL

-2.2

-2.0

-1.8

-1.6

DE 0�m

E even0 (L)−E odd

0 (L) =

√2M

πLe−ML + . . .

Márton Lájer THSA for ϕ4 model

Page 38: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

kink mass coupling dependence

0.0 0.5 1.0 1.5 2.0g

1

2

3

4

5M�m

solid line: SC kink mass. Red dots: mass extracted from vacuumsplitting

Márton Lájer THSA for ϕ4 model

Page 39: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Lowest antiperiodic state

5 10 15 20mL

1.6

1.8

2.0

2.2

E�m

after substracting periodic vacuum. g = 0.6

Márton Lájer THSA for ϕ4 model

Page 40: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Low-lying AP sector

0 5 10 15 20mL0

1

2

3

4

5

6

7E�m

at g = 0.6. Two-particle BY lines for n = 1

2, 32, 52. Resonance seems

3-particle involving a steady kink and two B1sMárton Lájer THSA for ϕ4 model

Page 41: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Kink mass

1.5 2.0g

0.5

1.0

1.5

M�m

Red dots: vacuum splitting result. Blue dots: antiperiodic result.Gray curve: SC expectation

Márton Lájer THSA for ϕ4 model

Page 42: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Critical point

vanishing kink mass → critical point around g = 3

Critical point: Ising universality class, governing CFT:

HCFT =2π

L(L0 + L0−

c

12) ; PCFT =

L(L0− L0)

L0, L0: Virasoro generators

Low-lying periodic spectrum:

state scaling dim. state scaling dim. state scaling dim.

|0〉 0 | 12, 12〉 1 | 1

16, 1

16〉 1

8

L−2L−2 |0〉 4 L−1L−1 | 12 ,1

2〉 3 L−1L−1 | 116 ,

1

16〉 1

8+2

Márton Lájer THSA for ϕ4 model

Page 43: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Lowest odd state

0 5 10 15 20 25 30mL

0.05

0.10

0.15

0.20

0.25EL

This should become | 116, 1

16〉 at critical point. From g = 2.76

(purple) to g = 3.48 (gray). l2π

(e1− e0) is depicted. le2π

= 1

8is

shown by continous lineMárton Lájer THSA for ϕ4 model

Page 44: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Spectrum at g = 3.12

5 10 15 20 25 30mL

1

2

3

4

EL

energies multiplied by l2π. Solid lines indicate L→ ∞ CFT

expectationMárton Lájer THSA for ϕ4 model

Page 45: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Conclusions

Investigated 1+1D scalar ϕ4 in symmetry breaking case

numerical side: THSA, e�ective eigenpair calculation for largebases; used minimal space in periodic sector

analytical side: extrapolate in�nite volume quantities from�nite size e�ects

at most two neutral excitations: Mussardo's conjecturecon�rned

we see B1, B2 disappear from the spectrum at largercouplings, even observe phase transition

two methods to obtain kink mass: vacuum splitting,antiperiodic lowest state

Márton Lájer THSA for ϕ4 model

Page 46: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Coupling dependence of masses

0.5 1.0 1.5g

1

2

3

Α; m1�m; m2�m; 2M�m

Márton Lájer THSA for ϕ4 model

Page 47: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Outlook

In the near future, the renormalization technique of Rychkov etal. should be included

Numerical algorithm can be scaled up to larger matrices

Measure non-integrable e�ects

longer term: other theories, higher dimensions, etc.

Márton Lájer THSA for ϕ4 model

Page 48: runcatedT Hilbert Space Approach for the 1+1D 4 theorybodri.elte.hu/seminar/lajer_20160224.pdf2016/02/24  · Z. Bajnok, M. Lajer, runcatedT Hilbert space approach to the 2d j4 theory

De�nition of modelFinite size physics

Numerics and data evaluationResults

Thank you for your attention

Márton Lájer THSA for ϕ4 model