Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface...

14
Rolf Kudritzki SS 2015 1 11. Virial Theorem Distances of Spiral and Elliptical Galaxies Virial Theorem v rot rotational velocity of spiral disks, ~ constant beyond disk scale length R 0 disk scale length σ velocity dispersion of stars in elliptical galaxies R eff “half light radius” of ellipticals (see below) M galaxy mass (visible and dark matter) confined within R 0 and R eff α s and α e form factors of order 1 to 10 resulting from mass distribution v 2 rot = s G M (R 0 ) R 0 (s1) spiral galaxies (e1) elliptical galaxies σ 2 = e G M (R eff ) R eff

Transcript of Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface...

Page 1: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

1

11. Virial Theorem Distances of Spiral and Elliptical Galaxies

Virial Theorem

vrot rotational velocity of spiral disks, ~ constant beyond disk scale length R0 disk scale length σ velocity dispersion of stars in elliptical galaxies Reff “half light radius” of ellipticals (see below) M galaxy mass (visible and dark matter) confined within R0 and Reff αs and αe form factors of order 1 to 10 resulting from mass distribution

v2rot

= ↵s

GM(R0)

R0

(s1) spiral galaxies

(e1) elliptical galaxies �2 = ↵eGM(Reff )

Reff

Page 2: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

2

radial surface brightness distribution

I(r) = I0e� r

R0

I(r) = Ieffe�7.67

⇣( rReff )

14 �1

⌘(s2) spiral galaxies

(e2) elliptical galaxies (de Vaucouleurs, 1941)

galaxy luminosity L = LB,V,I,… depending in which pass band we observe

L = 2⇡

Z 1

0I(r)rdr = 2⇡R2

0I0 (s3) spiral galaxies

L = 2⇡

Z 1

0I(r)rdr = 7.22⇡R2

effIeff (e3) elliptical galaxies (see next page)

L

2= 2⇡

Z Reff

0I(r)rdr (e3a) for elliptical galaxies

explains “half-light radius”

Page 3: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

3

elliptical galaxies calculation of integrated luminosity form surface brightness profile

Page 4: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

4

spiral galaxies

combining (s1) and (s3) we get

basis for Tully-Fisher relationship (Tully & Fisher, 1977, A&A 54, 661)

or

calibrate cTF and n from vrot measurements of ISM HI 21cm emission and integrated LB,V,I,…luminosities !!!! Note that for TF to work M/L needs to be similar in all spirals !!!!

L = 2⇡I0↵2s

G2 M2

v4rot

v4rot

= 2⇡I0↵2s

G2(M

L)2L

M

B,V,I..

= n · log(vrot

) + C

TF

(s4)

(s5)

Page 5: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

5

Lesson from the past: why the TFR gave H0 in the mid 80’s 20 years ago

M33 NGC 2403

M81 M31

A fit of the same slope fixed to the 4 galaxies in red would lead to a zero point 9% fainter ==> H0 9% (7 km/s/Mpc) larger

examples of TF calibration (see Brent Tully’s chapter 8)

Page 6: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

6

CF2: !I & [3.6] band Luminosity - HI Linewidth Calibration

Tully & Courtois 2012, ApJ, 749: 78 (I band)!

Sorce et al. 2013, ApJ, 765: 94 (Spitzer mid-IR)!3.6µm!

0.8µm

Page 7: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

7

elliptical galaxies

combining (e1) and (e3) we obtain similar as for spirals

�4 = 7.22⇡Ieff↵2eG

2(M

L)2L

MB,V,I.. = n · log(�) + CFJ

or

(e4)

(e5) Faber & Jackson, 1976, ApJ 204, 668

Faber – Jackson Relationship for elliptical galaxies

Page 8: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

8

FJ relation in Coma cluster

Allanson et al., 2009, ApJ 702, 1275

scatter ~ 0.6 mag larger than uncertainty of individual measurements à  dependence on additional parameter (Dressler et al., 1987, ApJ 313,59)

Page 9: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

9

Dressler et al., 1987, Bender et al., 1992, ApJ 399, 462 à slight dependence of M/L on M M

L⇠ M� ,� ⇡ 0.2 (e6)

combination of (e1) and (e4) à Reff ⇠ (M

L)�1I�1

eff�2 (e7)

(e1), (e6) and (e7) à Reff ⇠ (�2Reff )���2I�1

eff (e8)

solving (e8) for Reff à

Reff ⇠ �2 1��1+� I

� 11+�

eff (e9)

this is the fundamental plane relationship of elliptical galaxies, which relates size with velocity dispersion and surface brightness. One can use this for distances, because it provides an absolute length, which then leads distance through the angular size.

Page 10: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

10

fundamental plane relation in Coma cluster

Allanson et al., 2009, ApJ 702, 1275

μ is surface brightness in magnitudes ~ -2.5 log Ieff

Page 11: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

11

⇥eff ⇠ �2 1��1+� I

� 11+�

eff

1

d

⇥eff = 2Reff

dwith

(e11)

angular half-light diameter

à

(e11) allows to determine distance through a measurement of - angular diameter and surface brightness through photometry - velocity dispersion through spectroscopy and line width Following Dressler et al., 1987, one frequently uses the quantity Dn = angular diameter within which the total mean surface brightness (in mag) has a certain value, for instance 20.75 mag (B-Band). Since Dn ~ ΘeffIeff

0.8 (see below), this removes the Ieff dependence (e12) The modified relation (e12) is then called the Dn – σ relation. The method has been successfully applied by the HST Key Project.

Dn ⇠ 1

d�2 1��

1+� I� 1

1+�+0.8

eff ⇡ 1

d�2 1��

1+�

Page 12: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

12

fundamental plane distance removed

angular diameter distance removed

Kelson et al., 2000, ApJ 529, 768

Page 13: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

13

From (e2) we can calculate the integrated luminosity L(r) at radius r and the mean surface brightness at that radius (see also page 3)

L(r) = a⇡R

2effIeffF (x) = ⇡r

2I(r)

relation between Dn, Reff, Ieff

where a=7.22 and F (x) =

1

7!

Zx

0e

�x

x

7dx

x = 7.67

✓r

Reff

◆ 14

note that F(∞) = 1 and F(7.67) = ½. A good approximation for F(x) in the range 4 < x < 8 is

see plot next page F (x) ⇡ 1

2

⇣x

7.67

⌘3

(A1)

From (A1) we then obtain ✓r

Reff

◆2

= aIeff

I(r)

✓r

Reff

◆ 34

or r

Reff=

aIeff

I(r)

! 45

Page 14: Rolf Kudritzki SS 2015 11. Virial Theorem Distances …Rolf Kudritzki SS 2015 2 radial surface brightness distribution I (r)=I 0e r R0 I (r)=I eff e 7.67 (rRe ff) 1 4 1 (s2) spiral

Rolf Kudritzki SS 2015

14

F (x) ⇡ 1

2

⇣x

7.67

⌘3

F (x) =1

7!

Zx

0e

�x

x

7dx