Role of Association of Yanovskii Anionic σ Adducts in Their Oxidation with Quinones

5
1070-3632/02/7206-0928 $27.00 2002 MAIK Nauka/Interperiodica Russian Journal of General Chemistry, Vol. 72, No. 6, 2002, pp. 928 932. Translated from Zhurnal Obshchei Khimii, Vol. 72, No. 6, 2002, pp. 992 996. Original Russian Text Copyright 2002 by Kurenkova, Alifanova, Atroshchenko, Lapina, Tarasova, Akhromushkina, Kaminskii, Gitis. Role of Association of Yanovskii Anionic Adducts in Their Oxidation with Quinones Yu. V. Kurenkova, E. N. Alifanova, Yu. M. Atroshchenko, O. Yu. Lapina, E. Yu. Tarasova, I. M. Akhromushkina, A. Ya. Kaminskii, and S. S. Gitis Tolstoi Tula State Pedagogical University, Tula, Russia Received September 4, 2000 Abstract In oxidation of 1,3-dinitro- and 1,3,5-trinitrobenzene acetonate adducts (Yanovskii complexes) with sodium, potassium, and tetrabutylammonium cations in acetonitrile and tetrahydrofuran (290 313 K), ion pairs are less reactive than free ions, which is explained by charge redistribution in the ring of the adducts, decreasing the electron-donor power of the associated anion. Separation of the apparent rate constants into ionic and ion-pair contributions showed that the reactivity of the ion pairs depends on the radius of their cation. The revealed kinetic regularities are interpreted on the basis of AM1 semiempirical quantum-chemical calcula- tions of the ions and ion pairs with lithium cation. Anionic adducts of electron-deficient arenes exist in solutions as solvated ions and ion pairs of different types with different abilities to solvolysis [1] and re- actions with electrophiles [2] and oxidants [3]. Ho- wever, the role of association in oxidation of ad- ducts, which is one of efficient ways of introduction of C C bonds in aromatic systems, have scarcely been studied. Moreover, there has been lack of information in literature about quantitative characteristics of the ions and ion pairs of adducts. In this connection we performed a spectrophoto- metric study of the kinetics of oxidation of sodium (a), potassium (b), and tetrabutylammonium (c) 1- acetonyl-2,4-dinitro-6-X-cyclohexa-2,5-dienides [X = H(I), NO 2 (II)] with 1,4-benzoquinone (III) and 2,3,5,6-tetrabromo-1,4-benzoquinone (IV) in MeCN and THF. The oxidation reaction has an overall second order and involves formation of a donor acceptor ion-pair intermediate V whose accumulation and consumption can be followed by the absorbance in the region of 12 000 cm 1 [4]. H CH 2 COCH 3 NO 2 X NO 2 Ct + + Y Y Y Y O O H CH 2 COCH 3 NO 2 X NO 2 Ct + Y Y Y Y O O NO 2 CH 2 COCH 3 NO 2 X + Y Y Y Y OH O Ct + Ia Ic, IIa IIc III, IV Va Vc, VIa VIc VII, VIII IXa IXc, Xa Xc X=H(I, V, VII), NO 2 (II, VI, VIII); Y = H (III, V, IX), Br (IV, VI, X); Ct + = Na + (a), K + (b), [N(C 4 H 9 ) 4 ] + (c). In acetonitrile ( 36.0), where adducts are mostly present as free ions, the rate constant is independent of the concentration of adducts [k 2 (Ib) (2.19 0.06) 10 1 l mol 1 s 1 (298 K)]. In THF the rate constant decreases with increasing concentration of adducts (Table 1), on account of increasing fraction of the tight ion pair. The reactivity of ions and ion pairs was estimated by the Acree equation [5]. k app = k i + k ip (1 ). Here k app is the apparent second-order rate constant, k i and k ip are the oxidation rate constants of ions and

Transcript of Role of Association of Yanovskii Anionic σ Adducts in Their Oxidation with Quinones

1070-3632/02/7206-0928$27.00C2002 MAIK [Nauka/Interperiodica]

Russian Journal of General Chemistry,Vol. 72, No. 6, 2002, pp. 9283932. Translated from Zhurnal Obshchei Khimii, Vol. 72, No. 6,2002,pp. 9923996.Original Russian Text CopyrightC 2002 by Kurenkova,Alifanova, Atroshchenko, Lapina, Tarasova, Akhromushkina, Kaminskii, Gitis.

ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ

Role of Association of Yanovskii Anionic s Adductsin Their Oxidation with Quinones

Yu. V. Kurenkova, E. N. Alifanova, Yu. M. Atroshchenko, O. Yu. Lapina,E. Yu. Tarasova, I. M. Akhromushkina, A. Ya. Kaminskii, and S. S. Gitis

Tolstoi Tula State Pedagogical University, Tula, Russia

Received September 4, 2000

Abstract- In oxidation of 1,3-dinitro- and 1,3,5-trinitrobenzene acetonates adducts (Yanovskii complexes)with sodium, potassium, and tetrabutylammonium cations in acetonitrile and tetrahydrofuran (2903313 K), ionpairs are less reactive than free ions, which is explained by charge redistribution in the ring of thes adducts,decreasing the electron-donor power of the associated anion. Separation of the apparent rate constants intoionic and ion-pair contributions showed that the reactivity of the ion pairs depends on the radius of their cation.The revealed kinetic regularities are interpreted on the basis of AM1 semiempirical quantum-chemical calcula-tions of the ions and ion pairs with lithium cation.

Anionic s adducts of electron-deficient arenes existin solutions as solvated ions and ion pairs of differenttypes with different abilities to solvolysis [1] and re-actions with electrophiles [2] and oxidants [3]. Ho-wever, the role of association in oxidation ofs ad-ducts, which is one of efficient ways of introductionof C3C bonds in aromatic systems, have scarcely beenstudied. Moreover, there has been lack of informationin literature about quantitative characteristics of theions and ion pairs ofs adducts.

In this connection we performed a spectrophoto-

ÄÄÄÄÄÄÄÄÄÄÄÄ

metric study of the kinetics of oxidation of sodium(a), potassium (b), and tetrabutylammonium (c) 1-acetonyl-2,4-dinitro-6-X-cyclohexa-2,5-dienides [X =H (I ), NO2 (II )] with 1,4-benzoquinone (III ) and2,3,5,6-tetrabromo-1,4-benzoquinone (IV ) in MeCNand THF.

The oxidation reaction has an overall second orderand involves formation of a donor3acceptor ion-pairintermediateV whose accumulation and consumptioncan be followed by the absorbance in the region of12000 cm31 [4].

8?EoeidjH CH2COCH3

NO2X

NO23 Ct+

+ 8?Eodjodj

Y

Y

Y

Y

O

O

7647 8?EoeidjH CH2COCH3

NO2X

NO23 Ct+8?Eodjodj

Y

Y

Y

Y

O

O

777777776 76 5djg

gNO2

CH2COCH3

NO2X+ 5djg

gdjY Y

Y YOH

O3Ct+

Ia3Ic, IIa 3IIc III, IV Va 3Vc, VIa3VIc VII, VIII IXa 3IXc,Xa3Xc

X = H (I, V, VII ), NO2 (II, VI, VIII ); Y = H (III, V, IX ), Br (IV, VI, X ); Ct+ = Na+ (a), K+ (b), [N(C4H9)4]+ (c).ÄÄÄÄÄÄÄÄÄÄÄÄ

In acetonitrile (e 36.0), wheres adducts are mostlypresent as freeions, the rate constant is independentof the concentration ofs adducts [k2 (Ib ) (2.19+0.06)01031 l mol31 s31 (298 K)]. In THF the rateconstant decreases with increasing concentration ofs adducts (Table 1), on account of increasing fractionof the tight ion pair.

The reactivity of ions and ion pairs was estimatedby the Acree equation [5].

kapp = kia + kip(1 3 a).

Here kapp is the apparent second-order rate constant,ki and kip are the oxidation rate constants of ions and

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 72 No. 6 2002

ROLE OF ASSOCIATION OF YANOVSKII ANIONIC s ADDUCTS 929

Table 1. Second-order rate constants for oxidation ofs adducts Ia3Ic and IIa 3IIc in THF (298 K)ÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

cad0104, M³ Ia ³ IIa ³ IbÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄij k2010, l mol31 s31 ³ a ³ k20102, l mol31 s31³ a ³ k2010, l mol31 s31³ a

ÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄ7.14 ³ 1.71+0.08 ³ 0.275 ³ ³ ³ 2.94+0.09 ³ 0.1796.66 ³ 1.83+0.04 ³ 0.283 ³ 1.00+0.02 ³ 0.310 ³ 3.47+0.13 ³ 0.1855.55 ³ 1.91+0.10 ³ 0.305 ³ 1.03+0.01 ³ 0.334 ³ 3.63+0.08 ³ 0.2033.33 ³ 1.98+0.06 ³ 0.374 ³ 1.18+0.03 ³ 0.407 ³ 4.54+0.11 ³ 0.2632.22 ³ 2.33+0.11 ³ 0.435 ³ 1.99+0.01 ³ 0.471 ³ 5.05+0.09 ³ 0.3221.33 ³ ³ ³ 2.52+0.13 ³ 0.557 ³ 5.23+0.12 ³ 0.4150.67 ³ 2.63+0.12 ³ 0.637 ³ 3.54+0.25 ³ 0.674 ³ 5.37+0.09 ³ 0.5880.62 ³ 2.67+0.14 ³ 0.648 ³ ³ ³ ³0.50 ³ 2.87+0.09 ³ 0.685 ³ 7.74+0.04 ³ 0.728 ³ 5.50+0.29 ³ 0.6780.33 ³ ³ ³ 11.7+0.40 ³ 0.781 ³ ³

ÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄ

cad0104, M³ IIa ³ Ic ³ IIcÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄijk20102, l mol31 s31³ a ³ k2010, l mol31 s31³ a ³ k20102, l mol31 s31³ a

ÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄ7.14 ³ 2.44+0.02 ³ 0.286 ³ 1.78+0.06 ³ 0.472 ³ 0.398+0.024 ³ 0.4486.66 ³ 3.08+0.03 ³ 0.294 ³ 2.01+0.02 ³ 0.483 ³ 0.729+0.051 ³ 0.4595.55 ³ 3.06+0.01 ³ 0.317 ³ 2.10+0.05 ³ 0.514 ³ 0.843+0.032 ³ 0.4843.33 ³ 4.53+0.13 ³ 0.388 ³ 2.13+0.03 ³ 0.601 ³ 0.991+0.012 ³ 0.5762.22 ³ ³ ³ 2.39+0.06 ³ 0.669 ³ 1.03+0.02 ³ 0.6441.33 ³ 9.81+0.15 ³ 0.535 ³ 2.54+0.13 ³ 0.751 ³ 1.29+0.05 ³ 0.7280.67 ³ 29.2+1.4 ³ 0.653 ³ 2.58+0.02 ³ 0.842 ³ 1.57+0.08 ³ 0.8250.62 ³ 39.7+1.3 ³ 0.694 ³ ³ ³ 2.30+0.03 ³ 0.8330.50 ³ ³ ³ 2.72+0.08 ³ 0.873 ³ 2.40+0.14 ³ 0.8580.33 ³ 61.8+2.2 ³ 0.763 ³ 3.21+0.12 ³ 0.908 ³ 2.98+0.70 ³ 0.897

ÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄ

ion pairs, respectively, anda is the dissociationdegree ofs adducts, determined by conductometry.

The ki values fors adductsIa3Ic are higher thankip, and kip increase in the order K+ > Na+ >[N(C4H9)4]

+. This result can be explained in terms ofthe increasing radius of solvated cation, whichenhances steric hindrances to formation of inter-mediate V and thus slows down the reaction. Thedependence ofkapp/(1 3 a) on a/(1 3 a) for 1,3,5-tri-

1.00.80.60.40.2

00.35 1.35 2.35 3.35 4.35

0.6

0.4

0.2

0

a/(1 3 a)

12

Fig. 1. Plot of kapp/(1 3 a) vs. a/(1 3 a) for s adducts.(1) Compound Ia and (2) compound IIa .

nitrobenzenes adducts is not linear (Fig. 1), and,therefore, the apparent rate constants are impossibleseparate into ionic and ion-pair contributions by theAkri equation.

The plots of lnki/kip on ln Kd (Kd is the dissociationconstant) fors adductsIa3Ic (Fig. 2) are straight lineswith positive slopes, which, too, suggests that the re-activity of ion pairs increases with increasing degreeof binding of the anion with the cation.

5

4

3

2

1

0311 310 39 38 37

log Kd

Fig. 2. Plot of ln ki/kip vs. lnKd for s adductsIa3Ic.

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 72 No. 6 2002

930 KURENKOVA et al.

(a)

HH

H

H

HH

H

H

H H

H

H

H H

H

HH

H

CC

CC

CCO O

OO

OO

OO

OO

N

NN

N

0.095

0.084

0.13530.270

30.327

0.126

0.2450.086

30.4370.588

30.43730.3440.096

0.152

0.599

0.034

0.047

0.213

0.106

0.106

30.25530.038

0.132

30.449 30.444

0.130

0.147

30.20030.070

0.116

0.214

0.136

0.009

30.242

0.545

30.480 30.487

0.04730.209

0.179

30.3800.576

30.3820.0940.23230.271

30.290

0.097

0.101

0.105

Li

0.721

(b)

H H H HO O

H

H

H

HH H

H

H H

O

OO

O

O O O O

O

O O

O

CC

C

CC

C

H

N

N

N

N

N NH

0.0890.096

30.270

0.1080.235

H0.215

0.091 30.3910.578

30.42430.2970.080

0.170

0.059

30.3530.600

30.424 30.425

0.171

0.08030.289

30.424

0.581

30.391 0.144

0.114

30.297

30.357

0.569

30.35830.2050.035

0.171

30.463 30.464

0.566

30.270 0.170

0.019

0.03230.202

0.144

0.120

30.2740.087

0.106

30.267

0.2400.207

0.096

0.114

30.3430.567

30.389

Li0.749

Fig. 3. Atomic charges in the anions and ion pairs ofs adducts, calculated by the AM1 method. (a) StructureI and (b) struc-ture II .

It should be noted that dissociation stronger affectsthe rates of oxidation of 1,3,5-trinitrobenzenes ad-ducts compared with 1,3-dinitrobenzenes adducts.Thus, as the concentration ofs adducts changes from7.1401034 to 3.3301035 M, the oxidation rate con-stant ofs adductIIc increases 7.4 times and that ofadduct Ic, 1.8 times.

One of the reasons for the reduced reactivity of ionpairs compared with an ions may lie in the chargeredistribution induced by association of the anionwith the cation, which, according to [6], involvesoxygen atoms of the 4-NO2 group. The AM1 semi-empirical calculation of the ions and ion pairs ofsaducts I and II with lithium cation located at adistance of 2.42A from oxygen atoms of the 4-NO2group placed increased negative charge on the 4-NO2group and reduced negative charge on the ring and the2(6)-NO2 groups (Figs. 3a and 3b). The energy of the

highest occupied molecular orbital (EHOMO) for ionpairs and ions are38.08 and34.83 eV, respectively,which suggests a lower electron-donor ability of ionpairs compared with freeions.

It is interesting that on addition of dibenzo-18-crown-6 (XI ) the oxidation rate decreases, whereasthe bathochromic shifts of the absorption maxima ofs adducts points to formation of solvent-separated ionpairs and solvated ions from the tight ion pairs(Table 2). This is apparently explained by formationof so-called crown-separated ion pairs in whichthe metal cations are located in the crown ether cavity,but the distance between the cation and the anionremains unchanged: Ct+An

3+ XI 7647 Ct+XI An3.

Analysis of the activation parameters of oxidationof s adductsIa3Ic, measured in the range 2903313 Kin THF (Table 3), showed that the energyEa and the

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 72 No. 6 2002

ROLE OF ASSOCIATION OF YANOVSKII ANIONIC s ADDUCTS 931

Table 2. Dependence of the oxidation rate ofs adductIbon the concentration of crown ether (cce) in THF (298 K)ÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄ

cad/cce ³ k2010, l mol31 s31³ lmax, nmÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄ

0 ³ 5.34+0.12 ³ 541.11 : 0.2 ³ 5.39+0.18 ³ 542.31 : 1 ³ 4.65+0.05 ³ 543.41 : 5 ³ 2.49+0.15 ³ 549.91 : 10 ³ 2.65+0.98 ³ 556.2

ÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄ

changes in the activation enthalpyDH # and entropyDS# decrease with increasing radiusR of solvatedcation. Thus, asR and, consequently, the dissociationconstant ofs adduct increase (Table 4), the entropydifference between the starting and transition stateincreases, and, since the reaction is entropy-controlled,it is slowed down.

Thus, we found that ion pairs ofs adducts are lessreactive than freeions, which is explained by the factthat association increases the negative charge on the

Table 3. Termodynamic parameters of oxidation ofs adducts Ia3Ic in THF (298 K)ÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄ

Cation ³ Ea, kJ/mol ³ DH #, kJ/mol ³ DS#, kJ mol31 K31 ³ DS#T, kJ/mol ³ DG#, kJ/mol ³ a

ÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄNa+ ³ 50.8+0.7 ³ 48.4+0.2 ³ 397.8+0.7 ³ 29.1 ³ 77.0+0.4 ³ 0.435K+ ³ 48.1+0.8 ³ 45.6+0.5 ³ 3101.1+1.2 ³ 30.1 ³ 75.2+0.7 ³ 0.415[N(C4H9)4]+ ³ 29.2+2.6 ³ 26.7+2.1 ³ 3168.4+2.6 ³ 50.2 ³ 77.1+1.0 ³ 0.472ÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄ

Table 4. Dissociation constants (Kd), ionic (ki), and ion-pair (kip) rate constants of oxidation ofs adductsIa3Ic (298 K)ÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄs Adduct ³ Kd0105, M ³ ki 010, l mol31 s31 ³ kip010, l mol31 s31 ³ r ³ ki/kip

ÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄIa ³ 7.46 ³ 3.54+0.18 ³ 1.14+0.28 ³ 0.997 ³ 3.1Ib ³ 2.60 ³ 5.07+0.10 ³ 4.56+0.37 ³ 0.985 ³ 1.3Ic ³ 30.1 ³ 3.32+0.21 ³ 0.272+0.093 ³ 0.999 ³ 12

ÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄ

ring and decreases the negative charge on the 4-NO2group. The reactivity of ion pairs decreases withincreasing ionic radius of their cation.

EXPERIMENTAL

Kinetic and spectral measurements were performedon a Specord M-40 spectrophotometer by the proce-dure in [7] in temperature-controlled cells 0.1 to 5 cmthick. The rates of oxidation ofs adducts were fol-lowed by the decrease of optical density in theirabsorption maxima. All measurement were performedunder pseudo-first-order conditions at 503100-foldexcesses of oxidant.

Conductometric measurements were performed bemeans of an R-5010 ac bridge and a speciallydesigned cell with parallel-plate platinum electrodes.The concentrations were measured to an accuracy of0.2% and the electrical conductivities, 0.832%,depending on concentration. Thel0 and Kd (l0 isequivalent electrical conductivity) were calculated bythe program in [8].

Quantum-chemical calculations were performed by

the HyperChem 4.5 program, AM1 semiempiricalmethod, Polak3Ribiere optimization algorithm,gradient 1034.

The Yanovskiis adducts and quinones were syn-thesized by the procedures in [9] and [10], respecti-vely. Their structures were proved by electronic,1HNMR, and IR spectroscopy. The solvents were puri-fied according to [11], and their purities were control-led by the refractive indices measured on an IRF-22refractometer.

ACKNOWLEDGMENTS

The work was financially supported by the RussianFoundation for Basic Research (project no. 01-03-96002).

REFERENCES

1. Glaz, A.I., Gitis, S.S., and Kaminskii, A.Ya.,Izv. Sib.Otd. Akad. Nauk SSSR, Ser. Khim.,1990, vol. 4, no. 2,pp. 1003108.

2. Alifanova, E.N., Atroshchenko, Yu.M., Kamin-

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 72 No. 6 2002

932 KURENKOVA et al.

skii, A.Ya., Gitis, S.S., Grudtsyn, Yu.D., Naso-nov, S.N., Alekhina, N.N., and Illarionova, L.V.,Zh. Org. Khim.,1993, vol. 29, no. 7, pp. 141231418.

3. Kurenkova, Yu.V., Alifanova, E.N., Atroshchen-ko, Yu.M., Akhromushkina, I.M., Gitis, S.S., andKaminskii, A.Ya., Zh. Obshch. Khim.,2001, vol. 71,no. 4, pp. 6443649.

4. Atroshchenko, Yu.M., Akhromushkina, I.M., Gi-tis, S.S., Nevodchikov, V.I., Savinova, L.N., Druzh-kov, I.O., Kaminskii, A.Ya., and Nechet, O.V.,Zh.Obshch. Khim.,1993, vol. 63, no. 8, pp. 184331848.

5. Solov’yanov, A.A. and Beletskaya, I.P.,Usp. Khim.,1978, vol. 47, no. 5, pp. 8193844.

6. Alifanova, E.N., Kalnin’sh, K.K., Chudakov, P.V.,Kaminskii, A.Ya., Kutsenko, A.D., and Gitis, S.S.,

Zh. Obshch. Khim.,2001, vol. 71, no. 2, pp. 3003309.7. Savinova, L.N., Akhromushkina, I.M., Atroshchen-

ko, Yu.M., Gitis, S.S., and Kaminskii, A.Ya.,Zh. Org.Khim., 1993, vol. 29, no. 5, pp. 9943950.

8. Kalugin, O.N. and V’yunnik, I.N.,Zh. Obshch. Khim.,1990, vol. 60, no. 6, pp. 121331219.

9. Gitis, S.S. and Kaminskii, A.Ya.,Zh. Obshch. Khim.,1963, vol. 33, no. 10, pp. 329733300.

10. Houben, J.,Die Methoden der organishchen Chemie,Leipzig: Thieme, 1930. Translated under the titleMetody organicheskoi khimii,vol. 3, issue 2, Moscow:ONTI, 1935, p. 197.

11. Organic Solvents: Physical Properties and Methods ofPurification, Weissberger, A., Proskauer, E.S., Rid-dick, J.A., and Toops, E.E., Jr., Eds., New York:Interscience, 1955.