Rocket Performance - University Of...

56
Rocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND Rocket Performance e rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis • Multistaging • Optimal ΔV distribution between stages • Trade-oratios Parallel staging Modular staging 1 © 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Transcript of Rocket Performance - University Of...

Page 1: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Rocket Performance• The rocket equation • Mass ratio and performance • Structural and payload mass fractions • Regression analysis • Multistaging • Optimal ΔV distribution between stages • Trade-off ratios • Parallel staging • Modular staging

1

© 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Page 2: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

• Momentum at time t:

• Momentum at time t+Δt:

• Some algebraic manipulation gives: !

• Take to limits and integrate:

m v

Derivation of the Rocket Equationm-Δm

v+ΔvΔm

Ve

v-Ve

M = mv

M = (m − ∆m)(V + ∆v) + ∆m(v − Ve)

m∆v = −∆mVe

! mfinal

minitial

dm

m= −

! Vfinal

Vinitial

dv

Ve

2

Page 3: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

The Rocket Equation• Alternate forms

!

• Basic definitions/concepts – Mass ratio !

– Nondimensional velocity change“Velocity ratio”

r ≡

mfinal

minitial= e

∆V

Ve

r ≡mfinal

minitialor ℜ ≡

minitial

mfinal

∆v = −Ve ln

!

mfinal

minitial

"

= −Ve ln r

3

⌫ ⌘ �V

Ve

Page 4: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

0.001

0.01

0.1

1

0 2 4 6 8

Rocket Equation (First Look)

Velocity Ratio, (ΔV/Ve)

Mas

s Rat

io, (

Mfin

al/M

initi

al)

Typical Range for Launch to

Low Earth Orbit

4

Page 5: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Sources and Categories of Vehicle Mass

Payload Propellants Structure Propulsion Avionics Power Mechanisms Thermal Etc.

5

Page 6: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Sources and Categories of Vehicle Mass

Payload Propellants Inert Mass

Structure Propulsion Avionics Power Mechanisms Thermal Etc.

6

Page 7: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Cost and Weight Distribution - Atlas V

7

Page 8: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Cost and Weight - Atlas V First Stage

8

Propellant mass fraction PMF =

propellant mass

total stage mass

Page 9: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Cost and Weight - Atlas V Second Stage

9

Page 10: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Basic Vehicle Parameters• Basic mass summary

• Inert mass fraction !!

• Payload fraction !!

• Parametric mass ratior = λ + δ

mo =initial mass mpl =payload mass mpr =propellant mass min =inert mass

δ ≡

min

mo

=min

mpl + mpr + min

λ ≡

mpl

mo

=mpl

mpl + mpr + min

mo = mpl + mpr + min

10

Page 11: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

0.001

0.01

0.1

1

0 2 4 6 8

00.050.10.150.2

Rocket Equation (including Inert Mass)

Velocity Ratio, (ΔV/Ve)

Paylo

ad F

ract

ion,

(Mpa

yloa

d/M

initi

al) Typical Range for Launch to Low Earth Orbit Inert Mass

Fraction δ

11

Page 12: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Limiting Performance Based on Inert MassA

sym

ptot

ic V

eloc

ity

Rat

io, (Δ

V/V

e)

Inert Mass Fraction, (Minert/Minitial)

00.5

11.52

2.53

3.54

4.55

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Typical Feasible Design Range for

Inert Mass Fraction

12

Page 13: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Regression Analysis of Existing Vehicles

Veh/Stage prop mass gross mass Type P rope l l an t s Isp vac isp sl s igma eps delta( l b s ) ( l b s ) ( s e c ) ( s e c )

Delta 6925 Stage 2 13,367 15,394 StorableN2O4-A50 319.4 0.152 0.132 0.070Delta 7925 Stage 2 13,367 15,394 StorableN2O4-A50 319.4 0.152 0.132 0.065Titan II Stage 2 59,000 65,000 StorableN2O4-A50 316.0 0.102 0.092 0.087Titan III Stage 2 77,200 83,600 StorableN2O4-A50 316.0 0.083 0.077 0.055Titan IV Stage 2 77,200 87,000 StorableN2O4-A50 316.0 0.127 0.113 0.078Proton Stage 3 110,000 123,000 StorableN2O4-A50 315.0 0.118 0.106 0.078Titan II Stage 1 260,000 269,000 StorableN2O4-A50 296.0 0.035 0.033 0.027Titan III Stage 1 294,000 310,000 StorableN2O4-A50 302.0 0.054 0.052 0.038Titan IV Stage 1 340,000 359,000 StorableN2O4-A50 302.0 0.056 0.053 0.039Proton Stage 2 330,000 365,000 StorableN2O4-A50 316.0 0.106 0.096 0.066Proton Stage 1 904,000 1,004,000 StorableN2O4-A50 316.0 285.0 0.111 0.100 0.065

average 312 .2 285 .0 0 .100 0 .089 0 .061standard deviation 8 . 1 0 .039 0 .033 0 .019

13

Page 14: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Inert Mass Fraction Data for Existing LVs

0.00

0.02

0.04

0.06

0.080.10

0.12

0.14

0.16

0.18

0 1 10 100 1,000 10,000

Gross Mass (MT)

Iner

t M

ass

Frac

tion

LOX/LH2LOX/RP-1SolidStorable

14

Page 15: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Regression Analysis

• Given a set of N data points (xi,yi) • Linear curve fit: y=Ax+B

– find A and B to minimize sum squared error !!

– Analytical solutions exist, or use Solver in Excel • Power law fit: y=BxA

!

• Polynomial, exponential, many other fits possible

error =N!

i=1

(Axi + B − yi)2

error =N!

i=1

[A log(xi) + B − log(yi)]2

15

Page 16: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Solution of Least-Squares Linear Regression∂(error)

∂A= 2

N!

i=1

(Axi + B − yi)xi = 0

∂(error)

∂B= 2

N!

i=1

(Axi + B − yi) = 0

A

N!

i=1

x2

i + B

N!

i=1

xi −

N!

i=1

xiyi = 0

A

N!

i=1

xi + NB −

N!

i=1

yi = 0

B =

!yi

!x2

i−

!xi

!xiyi

N!

x2i− (

!xi)

2A =

N!

xiyi −

!xi

!yi

N!

x2i− (

!xi)

2

16

Page 17: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Regression Analysis - Storables

R2 = 0.05410.00

0.02

0.04

0.06

0.08

0.10

1 10 100 1,000

Gross Mass (MT)

Iner

t M

ass

Frac

tion

17

Page 18: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Regression Values for Design Parameters

Vacuum Ve (m/sec)

Inert Mass Fraction

Max ΔV(m/sec)

LOX/LH2 4273 0.075 11,070

LOX/RP-1 3136 0.063 8664

Storables 3058 0.061 8575

Solids 2773 0.087 6783

18

Page 19: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

0.00#

0.02#

0.04#

0.06#

0.08#

0.10#

0.12#

0.14#

0.16#

0.18#

0.20#

1# 10# 100# 1,000# 10,000#

Stage#Inert#M

ass#F

rac6on

#ε#

Stage#Gross#Mass,#MT#

Storable#MER# LOX/RPD1# Storables# LOX/LH2# Cryo#MER#

Economy of Scale for Stage Size

19

✏ =M

inert

Minert

+Mprop

PMF = 1� ✏

Page 20: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Stage Inert Mass Fraction Estimation

20

✏storables

= 1.6062 (Mstage

hkgi)�0.275

✏LOX/LH2 = 0.987 (Mstagehkgi)�0.183

Page 21: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

The Rocket Equation for Multiple Stages• Assume two stages !

!

!

!

!

• Assume Ve1=Ve2=Ve

∆V1 = −Ve1 ln

!

mfinal1

minitial1

"

= −Ve1 ln(r1)

∆V2 = −Ve2 ln

!

mfinal2

minitial2

"

= −Ve2 ln(r2)

∆V1 + ∆V2 = −Ve ln(r1) − Ve ln(r2) = −Ve ln(r1r2)

21

Page 22: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Continued Look at Multistaging• There’s a historical tendency to define r0=r1r2 !!

• But it’s important to remember that it’s really !!

• And that r0 has no physical significance, since

�V1 + �V2 = �Ve ln (r1r2) = �Ve ln�

mfinal1

minitial1

mfinal2

minitial2

�V1 + �V2 = �Ve ln (r1r2) = �Ve ln (r0)

mfinal1 ⇥= minitial2 � r0 ⇥=mfinal2

minitial1

22

Page 23: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Multistage Inert Mass Fraction• Total inert mass fraction !

!

!

• Convert to dimensionless parameters !

• General form of the equation

δ0 =min,1

m0

+min,2

m0,2

m0,2

m0

+min,3

m0,3

m0,3

m0,2

m0,2

m0

δ0 =min,1 + min,2 + min,3

m0

=min,1

m0

+min,2

m0

+min,3

m0

δ0 = δ1 + δ2λ1 + δ3λ2λ1

δ0 =

n stages!

j=1

[δj

j−1"

ℓ=1

λℓ]

23

Page 24: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Multistage Payload Fraction• Total payload fraction (3 stage example) !

!

• Convert to dimensionless parameters !

• Generic form of the equation

λ0 =

mpl

m0

=

mpl

m0,3

m0,3

m0,2

m0,2

m0

λ0 = λ3λ2λ1

λ0 =

n stages!

j=1

λj

24

Page 25: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Effect of δ and ΔV/Ve on Payload

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

0 0.2 0.4 0.6 0.8 1

Inert Mass Fraction

To

tal P

ayl

oad

Fra

ctio

n

1 stage2 stages3 stages4 stages

�V

Ve= 0.25

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0 0.2 0.4 0.6 0.8 1

Inert Mass Fraction

To

tal P

ayl

oad

Fra

ctio

n

1 stage2 stages3 stages4 stages

�V

Ve= 0.5

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0 0.2 0.4 0.6 0.8 1

Inert Mass Fraction

To

tal P

ayl

oad

Fra

ctio

n

1 stage2 stages3 stages4 stages

�V

Ve= 1.0

0.000

0.050

0.100

0.150

0.200

0.250

0 0.2 0.4 0.6 0.8 1

Inert Mass Fraction

To

tal P

ayl

oad

Fra

ctio

n

1 stage2 stages3 stages4 stages

�V

Ve= 1.5

0.000

0.050

0.100

0.150

0.200

0.250

0 0.2 0.4 0.6 0.8 1

Inert Mass Fraction

To

tal P

ayl

oad

Fra

ctio

n

1 stage2 stages3 stages4 stages

�V

Ve= 2.0

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0 0.2 0.4 0.6 0.8 1

Inert Mass Fraction

To

tal P

ayl

oad

Fra

ctio

n

1 stage2 stages3 stages4 stages

�V

Ve= 2.5

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0 0.2 0.4 0.6 0.8 1

Inert Mass Fraction

To

tal P

ayl

oad

Fra

ctio

n

1 stage2 stages3 stages4 stages

�V

Ve= 3.0

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0 0.2 0.4 0.6 0.8 1

Inert Mass Fraction

To

tal P

ayl

oad

Fra

ctio

n

1 stage2 stages3 stages4 stages

�V

Ve= 4.0

25

Page 26: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5

Velocity Ratio (ΔV/Ve)

Payloa

d Fr

action

1 stage2 stage3 stage4 stage

Effect of StagingInert Mass Fraction δ=0.15

Single StageTwo Stage

Three StageFour Stage

26

Page 27: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Trade Space for Number of Stages

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Inert Mass Fraction

Velo

city

Rati

o D

V/

Ve

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Inert Mass Fraction

Velo

city

Rati

o D

V/

Ve

LOX/LH2

LOX/RP-1Storables

Solids

Single Stage

Two Stage

Three Stage

Four Stage

27

Page 28: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

0

10

20

30

40

50

60

70

2000 3000 4000 5000 6000 7000 8000 9000 10000

Stage 2 ΔV (m/sec)

Nor

mal

ized

Mas

s (k

g/kg

of

payl

oad)

Total massStage 2 massStage 1 mass

Effect of ΔV Distribution1st Stage: Solids 2nd Stage: LOX/LH2

28

Page 29: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

ΔV Distribution and Design Parameters

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2000 3000 4000 5000 6000 7000 8000 9000 10000

Stage 2 ΔV (m/sec)

delta_0lambda_0lambda/delta

1st Stage: Solids 2nd Stage: LOX/LH2

29

Page 30: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Lagrange Multipliers• Given an objective function

subject to constraint function !

• Create a new objective function !

• Solve simultaneous equations

y = f(x)

z = g(x)

z = f(x) + �[g(x)� z]

�y

�x= 0

⇥y

⇥�= 0

30

Page 31: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Optimum ΔV Distribution Between Stages• Maximize payload fraction (2 stage case)

subject to constraint function !

• Create a new objective function !

!

➥Very messy for partial derivatives!

∆Vtotal = ∆V1 + ∆V2

λo =

!

e−∆V1Ve,1

− δ1

" !

e−∆V2Ve,2

− δ2

"

+ K [∆V1 + ∆V2 − ∆Vtotal]

λ0 = λ1λ2 = (r1 − δ1)(r2 − δ2)

31

Page 32: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Optimum ΔV Distribution (continued)

• Use substitute objective function

• Create a new constrained objective function !

• Take partials and set equal to zero

max (λo) ⇐⇒ max [ln (λo)]

ln (λo) = ln (r1 − δ1) + ln (r2 − δ2) + K [∆V1 + ∆V2 − ∆Vtotal]

∂ [ln (λo)]

∂r1

= 0∂ [ln (λo)]

∂r2

= 0∂ [ln (λo)]

∂K= 0

32

Page 33: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Optimum ΔV Special Cases• “Generic” partial of objective function

!

• Special case: δ1=δ2 Ve,1=Ve,2

!• Same principle holds for n stages

∂ [ln (λo)]

∂ri

=1

ri − δi

+ KVe,i

ri

= 0

r1 = r2 =⇒ ∆V1 = ∆V2 =∆Vtotal

2

r1 = r2 = · · · = rn =⇒

∆V1 = ∆V2 = · · · = ∆Vn =∆Vtotal

n

33

Page 34: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Sensitivity to Inert Mass ΔV for multistaged rocket !

!

where

∆Vtot =

n stages!

k=1

∆Vk =

n!

k=1

Ve,k ln

"

mo,k

mf,k

#

34

mo,k

= mpl

+mpr,k

+min,k

+nX

j=k+1

(mpr,j

+min,j

)

mf,k = mpl +min,k +nX

j=k+1

(mpr,j +min,j)

Page 35: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Finding Payload Sensitivity to Inert Mass• Given the equation linking mass to ΔV, take !

!

and solve to find !

!

• This equation shows the “trade-off ratio” - Δpayload resulting from a change in inert mass for stage k (for a vehicle with N total stages)

∂(∆Vtot)

∂mpldmpl +

∂(∆Vtot)

∂min,jdmin,j = 0

35

dmpl

dmin,k

����@(�V

tot

)=0

=�Pk

j=1 Ve,j

⇣1

mo,j

� 1m

f,j

PN`=1 Ve,`

⇣1

mo,`

� 1m

f,`

Page 36: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Trade-off Ratio Example: Gemini-Titan II

Stage 1 Stage 2Initial Mass (kg) 150,500 32,630Final Mass (kg) 39,370 6099

Ve (m/sec) 2900 3097

dm -0.1164 -1

36

Page 37: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Payload Sensitivity to Propellant Mass• In a similar manner, solve to find !

!

!

• This equation gives the change in payload mass as a function of additional propellant mass (all other parameters held constant)

37

dmpl

dmpr,k

����@(�V

tot

)=0

=�Pk

j=1 Ve,j

⇣1

mo,j

PN`=1 Ve,`

⇣1

mo,`

� 1m

f,`

Page 38: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Trade-off Ratio Example: Gemini-Titan II

Stage 1 Stage 2Initial Mass (kg) 150,500 32,630Final Mass (kg) 39,370 6099

Ve (m/sec) 2900 3097

dm -0.1164 -1

dm 0.04124 0.2443

38

Page 39: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Payload Sensitivity to Exhaust Velocity• Use the same technique to find the change in

payload resulting from additional exhaust velocity for stage k !

!

!

• This trade-off ratio (unlike the ones for inert and propellant masses) has units - kg/(m/sec)

39

dmpl

dVe,k

����@(�V

tot

)=0

=

Pkj=1 ln

⇣m

o,j

mf,j

PN`=1 Ve,`

⇣1

mo,`

� 1m

f,`

Page 40: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Trade-off Ratio Example: Gemini-Titan IIStage 1 Stage 2

Initial Mass (kg) 150,500 32,630Final Mass (kg) 39,370 6099

Ve (m/sec) 2900 3097

dm -0.1164 -1

dm 0.04124 0.2443dm

(kg/m/sec) 2.87 6.459

40

Page 41: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Parallel Staging

• Multiple dissimilar engines burning simultaneously

• Frequently a result of upgrades to operational systems

• General case requires “brute force” numerical performance analysis

41

Page 42: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Parallel-Staging Rocket Equation• Momentum at time t:

• Momentum at time t+Δt:(subscript “b”=boosters; “c”=core vehicle) !!!

• Assume thrust (and mass flow rates) constant

M = (m��mb ��mc)(v + �v)+�mb(v � Ve,b) + �mc(v � Ve,c)

42

M = mv

Page 43: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Parallel-Staging Rocket Equation• Rocket equation during booster burn

!where = fraction of core propellant remaining after booster burnout, and where

χ

Ve =Ve,bmb+Ve,cmc

mb+mc=

Ve,bmpr,b+Ve,c(1−χ)mpr,c

mpr,b+(1−χ)mpr,c

43

�V = �Ve ln⇣

mfinal

minitial

⌘= �Ve ln

⇣min,b+min,c+�mpr,c+m0,2

min,b+mpr,b+min,c+mpr,c+m0,2

Page 44: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Analyzing Parallel-Staging PerformanceParallel stages break down into pseudo-serial stages: • Stage “0” (boosters and core) !!

• Stage “1” (core alone)

!• Subsequent stages are as before

∆V0 = −Ve ln

!

min,b+min,c+χmpr,c+m0,2

min,b+mpr,b+min,c+mpr,c+m0,2

"

�V1 = �Ve,c ln�

min,c+m0,2min,c+�mpr,c+m0,2

44

Page 45: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Parallel Staging Example: Space Shuttle• 2 x solid rocket boosters (data below for single SRB)

– Gross mass 589,670 kg – Empty mass 86,183 kg – Ve 2636 m/sec – Burn time 124 sec

• External tank (space shuttle main engines) – Gross mass 750,975 kg – Empty mass 29,930 kg – Ve 4459 m/sec – Burn time 480 sec

• “Payload” (orbiter + P/L) 125,000 kg

45

Page 46: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Shuttle Parallel Staging Example

Ve,c = 4459m

sec

χ =480 − 124

480= 0.7417

Ve =2636(1, 007, 000) + 4459(721, 000)(1 − .7417)

1, 007, 000 + 721, 000(1 − .7417)= 2921

m

sec

∆V0 = −2921 ln862, 000

3, 062, 000= 3702

m

sec

∆V1 = −4459 ln154, 900

689, 700= 6659

m

sec

∆Vtot = 10, 360m

sec

46

Ve,b = 2636m

sec

Page 47: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Modular Staging

• Use identical modules to form multiple stages

• Have to cluster modules on lower stages to make up for nonideal ΔV distributions

• Advantageous from production and development cost standpoints

47

Page 48: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Module Analysis• All modules have the same inert mass and propellant

mass • Because δ varies with payload mass, not all modules

have the same δ! • Use module-oriented parameters !

!

• Conversions

ε ≡

min

min + mpr

σ ≡

min

mpr

σ =δ

1 − δ − λε =

δ

1 − λ

48

Page 49: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Rocket Equation for Modular Boosters

• Assuming n modules in stage 1, !

!

!

• If all 3 stages use same modules, nj for stage j, !

!

whereρpl ≡

mpl

mmod

; mmod = min + mpr

r1 =n1ε + n2 + n3 + ρpl

n1 + n2 + n3 + ρpl

r1 =n(min) + mo2

n(min + mpr) + mo2

=nε + mo2

mmod

n + mo2

mmod

49

Page 50: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Example: Conestoga 1620 (EER)• Small launch vehicle (1 flight, 1 failure) • Payload 900 kg • Module gross mass 11,400 kg • Module empty mass 1,400 kg • Exhaust velocity 2754 m/sec • Staging pattern

– 1st stage - 4 modules – 2nd stage - 2 modules – 3rd stage - 1 module – 4th stage - Star 48V (gross mass 2200 kg,

empty mass 140 kg, Ve 2842 m/sec)

50

Page 51: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Conestoga 1620 Performance• 4th stage Δ∆V

!

• Treat like three-stage modular vehicle; Mpl=3100 kg

51

�V4 = �Ve4 lnmf4

mo4= �2842 ln

900 + 140900 + 2200

= 3104msec

�pl =mpl

mmod=

310011400

= 0.2719

� =min

mmod=

140011400

= 0.1228

n1 = 4; n2 = 2; n3 = 1

Page 52: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Constellation 1620 Performance (cont.)

52

r1 =n1� + n2 + n3 + ⇥pl

n1 + n2 + n3 + ⇥pl=

4� 0.1228 + 2 + 1 + 0.27194 + 2 + 1 + 0.2719

= 0.5175

r2 =n2� + n3 + ⇥pl

n2 + n3 + ⇥pl=

2� 0.1228 + 1 + 0.27192 + 1 + 0.2719

= 0.4638

r3 =n3� + ⇥pl

n3 + ⇥pl=

1� 0.1228 + 0.27191 + 0.2719

= 0.3103

Vtotal = 10, 257msec

V1 = 1814msec

; V2 = 2116msec

V3 = 3223msec

; V4 = 3104msec

Page 53: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Discussion about Modular Vehicles• Modularity has several advantages

– Saves money (smaller modules cost less to develop) – Saves money (larger production run = lower cost/

module) – Allows resizing launch vehicles to match payloads

• Trick is to optimize number of stages, number of modules/stage to minimize total number of modules

• Generally close to optimum by doubling number of modules at each lower stage

• Have to worry about packing factors, complexity

53

Page 54: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

OTRAG - 1977-1983

54

Page 55: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Modular Example• Let’s build a launch vehicle out of seven Space

Shuttle Solid Rocket Boosters – Min=86,180 kg – Mpr=503,500 kg – T=14,685,000 N (T/W=2.98) !

!

!

• Look at possible approaches to sequential firing

ε ≡

min

min + mpr

= 0.1461 σ ≡

min

mpr

= 0.1711

55

Page 56: Rocket Performance - University Of Marylandspacecraft.ssl.umd.edu/academics/791S16/791S16L03.rocket_perf.pdfRocket Performance ENAE 791 - Launch and Entry Vehicle Design U N I V E

Rocket Performance ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y O FMARYLAND

Modular Sequencing - SRB Example• Assume no payload • All seven firing at once - ΔVtot=5138 m/sec • 3-3-1 sequence - ΔVtot=9087 m/sec • 4-2-1 sequence - ΔVtot=9175 m/sec • 2-2-2-1 sequence - ΔVtot=9250 m/sec • 2-1-1-1-1-1 sequence - ΔVtot=9408 m/sec • 1-1-1-1-1-1-1 sequence - ΔVtot=9418 m/sec • Sequence limited by need to balance thrust laterally

56