RNA-Seq library preparation - Oregon State...

34
RNA-Seq library preparation Brian J. Knaus USDA Forest Service Pacific Northwest Research Station 1

Transcript of RNA-Seq library preparation - Oregon State...

RNA-Seq library preparation

Brian J. Knaus

USDA Forest Service

Pacific Northwest Research Station

1

Doerge, R.W. 2002. Nature Reviews Genetics 3: 43-53.2

Why is library preparation

important?

•YieldIllumina claims 1-10 μg total RNAPracticalityCost effectiveness

•BiasInference of results

•Strandedness

3

4

Levin et al. 2010. Comprehensive comparative analysis of strand-

specific RNA sequencing methods. Nature Methods 7(9):709-715.

Yield from Levin et al. data.

5

Levin et al. 2010. Comprehensive comparative analysis of strand-

specific RNA sequencing methods. Nature Methods 7(9):709-715.

6

How many reads do you need?

I don’t think there is currently a good answer.

8

9

Control: Phi-X

Fc204, lane 8, OSU CGRB

5,386 bp, 44% GC

10

RNA Ligation – SRR059162

Saccharomyces cerevisiae

12,156,677 bp, 38% GC

Levin et al. 2010. Comprehensive comparative analysis of strand-

specific RNA sequencing methods. Nature Methods 7(9):709-715.

11

SMART - SRR059167

Levin et al. 2010. Comprehensive comparative analysis of strand-

specific RNA sequencing methods. Nature Methods 7(9):709-715.

GGG

12

SMART - SRR059167

Third file?

Levin et al. 2010. Comprehensive comparative analysis of strand-

specific RNA sequencing methods. Nature Methods 7(9):709-715.

13

Hybrid - SRR059169

Levin et al. 2010. Comprehensive comparative analysis of strand-

specific RNA sequencing methods. Nature Methods 7(9):709-715.

GGG

14

NNSR - SRR059171

Levin et al. 2010. Comprehensive comparative analysis of strand-

specific RNA sequencing methods. Nature Methods 7(9):709-715.

15

Bisulfite ‘S’ - SRR059174

Levin et al. 2010. Comprehensive comparative analysis of strand-

specific RNA sequencing methods. Nature Methods 7(9):709-715.

16

dUTP- SRR059176

Levin et al. 2010. Comprehensive comparative analysis of strand-

specific RNA sequencing methods. Nature Methods 7(9):709-715.

17

Control - SRR059178

Levin et al. 2010. Comprehensive comparative analysis of strand-

specific RNA sequencing methods. Nature Methods 7(9):709-715.

Random hexamer bias

Random hexamer #2 Oligo dT #2

18

19

Reproducible bias within but not among methods.

20

Parkhomchuck et al. 2009. Transcriptome analysis by strand-specific sequencing of

complimentary DNA. Nucleic Acids Research 37(18):e123

Strand specificity

Purify RNAX2

mRNA AAAAAA

TTTTTTParamagnetic

bead

Fragment RNA (Mg + heat; ~200 bp)

AAA

AAAAAA

First strand synthesisRandom hexamers

AAAmRNA AAAAAA

DNA – 5’ DNA-5’ DNA-5’

Second strandsynthesis

mRNA

DNA – 5’ DNA-5’ DNA-5’

5’-DNA 5’-DNA 5’-DNARN

A-S

eq

lib

rary

pre

p

21

End repairDNA – 5’ DNA-5’ DNA-5’

5’-DNA 5’-DNA 5’-DNA

‘A’ overhangDNA – 5’ DNA-5’ DNA-5’

5’-DNA 5’-DNA 5’-DNA A

AA

AA

A

Ligateadapters

DNA-5’

5’-DNA

A

A Adapter

T

T

Adapter

Size select electrophoresis

PCR Enrichment

Lib

rary

pre

p

22

23

Lister et al. 2008. Highly integrated single-base resolution maps of the

epigenome in Arabidopsis. Cell 133:523-536.

RNA ligation method

RNA extracted

Poly(A)+ isolation viaoligo dT selection

24

Structure of messenger ribonucleic acid

(mRNA) in eukaryotes.

Exon #15’UTR Intron #1 Exon #2 3’UTR

m7G cap Exon #15’UTR Exon #2 3’UTR Poly(A)+ tail

Transcription

Post transcriptional processing

25

Illumina mRNA method – not strand specific

First strand synthesis random hexamer (oligo dT)

Second strand synthesisE.coli pol I, RNase H

26

FragmentMetal hydrolysis (e.g., Mg, NaOAC)

PCR enrichmentPhusion, 15 cycles

End bluntingT4 DNA polymerase, DNA pol I,

Klenow, T4 polynucleotide kinase

dA TailingKlenow fragment (3’->5’ exo-)

Size selectionGel-based

CleanQIAquick

CleanQIAquick

CleanMinElute

Adapter ligationT4 DNA ligase

CleanMinElute

CleanQIAquick

dUTP mRNA method – strand specific

First strand synthesis random hexamer (oligo dT)

Second strand synthesis+ dUTP

E.coli pol I, RNase H

27

FragmentMetal hydrolysis (e.g., Mg, NaOAC)

PCR enrichmentPhusion, 15 cycles

End bluntingT4 DNA polymerase, DNA pol I,

Klenow, T4 polynucleotide kinase

dA TailingKlenow fragment (3’->5’ exo-)

Size selectionGel-based

CleanQIAquick

CleanQIAquick

CleanMinElute

Adapter ligationT4 DNA ligase

CleanMinElute

CleanQIAquick

Create gaps at UracilsUSER enzyme

Poly(A) + RNA100 ng

De-cap (5’ m7G)Tobacco acid pyrophosphatase

Illumina RNA ligation method

CleanPCIA & EtOH

FragmentNa citrate

CleanEtOH precipitation

5’ phosphorylateT4 polynucleotide kinase

3’ dephosphorylateAntarctic phosphatase

Ligate 3’ adapter T4 RNA ligase 2, truncated

Pre-adenylated adapter

Ligate 5’ adapterT4 RNA ligase 1

Reverse transcriptionSuperScript III

Size selectionGel (175-225 nt)

CleanRnase H, PCIA, EtOH

CleanGel extract, EtOH

PCRPhusion, 14 cycles

CleanAMPure beads

28

CleanRneasy MinElute

Poly(A) + RNA100 ng

De-cap (5’ m7G)Tobacco acid pyrophosphatase

Illumina RNA ligation method SPRI

CleanPCIA & EtOH

FragmentNa citrate

CleanEtOH precipitation

5’ phosphorylateT4 polynucleotide kinase

3’ dephosphorylateAntarctic phosphatase

Ligate 3’ adapter T4 RNA ligase 2, truncated

Pre-adenylated adapter

Ligate 5’ adapterT4 RNA ligase 1

Reverse transcriptionSuperScript III

Size selectionGel (175-225 nt)

CleanRnase H, PCIA, EtOH

CleanGel extract, EtOH

PCRPhusion, 14 cycles

CleanAMPure beads

29

CleanRneasy MinElute

Poly(A) + RNA200 ng

dUTP method

Clean2 X PCIA, EtOH

FragmentNa citrate

First strand synthesisRandom hexamers, Superscript III

PCR enrichmentPhusion, 14 cycles

30

Second strand synthesisE.coli ligase, DNA pol I

End bluntingT4 DNA polymerase, DNA pol I,

Klenow, T4 polynucleotide kinase

dA TailingKlenow fragment (3’->5’ exo-)

Size selectionGel-based

CleanQIAquick

CleanQIAquick

CleanQIAquick

Adapter ligationT4 DNA ligase

CleanQIAquick

CleanQIAquick

RNA-Seq library preparation

Brian J. Knaus

USDA Forest Service

Pacific Northwest Research Station

31

32

33

34