Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal...

64
Risk averse dynamic optimization Progress in continuous time Linz Alois Pichler 1 Ruben Schlotter 1 November 14, 2019 1

Transcript of Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal...

Page 1: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Risk averse dynamic optimizationProgress in continuous timeLinz

Alois Pichler1Ruben Schlotter1

November 14, 2019

1

Page 2: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Stochastic optimization[Markowitz, 1952]

Primal

minimize var(x>ξ

)subject to x ∈ Rd ,

Ex>ξ ≥ µ,d∑

i=1xi = 1

(xi ≥ 0)

Dual

maximize Ex>ξ

subject to x ∈ Rd ,

var(x>ξ

)≤ q,

d∑i=1

xi = 1

(xi ≥ 0)

A. Pichler risk averse 2

Page 3: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Assessment of risk

Proposition (Axioms, cf. [Deprez and Gerber, 1985],[Artzner et al., 1999])R : Y → R∪{±∞}

1 Monotonicity: if Y ≤ Y ′, then R(Y )≤R(Y ′),2 Subadditivity: R

(Y +Y ′

)≤R(Y ) +R(Y ′),

3 Translation equivariance: R(Y + c) =R(Y ) + c for Y ∈ Y andc ∈ R,

4 Positive homogeneity, R(λY ) = λ ·R(Y ) for λ > 0.

Equivalence principle

R(Y ) := EY most fair, risk neutralR(Y ) := esssupY most unfair, totally risk averse.

A. Pichler risk averse 3

Page 4: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Reformulation[Markowitz, 1952]

Primal

maximize Ex>ξ

s.t. −R(−x>ξ

)≤ q,

d∑i=1

xi = 1

(and xi ≥ 0).

Dual

minimize Ex>ξ+R(−x>ξ

)=:D

(−x>ξ

)s.t. Ex>ξ ≥ µ,

d∑i=1

xi = 1

(and xi ≥ 0).

A. Pichler risk averse 4

Page 5: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Outline

1 The discrete settingThe general multistageproblemDynamic programming

2 Continuous timeGeneratorsRisk generator

3 Spanning horizonsNested ExpressionsExplicit definition

4 Hamilton Jacobi BellmanHamilton JacobiFurther assessments of riskApplications

5 References

A. Pichler risk averse 5

Page 6: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Outline

1 The discrete settingThe general multistageproblemDynamic programming

2 Continuous timeGeneratorsRisk generator

3 Spanning horizonsNested ExpressionsExplicit definition

4 Hamilton Jacobi BellmanHamilton JacobiFurther assessments of riskApplications

5 References

A. Pichler risk averse 6

Page 7: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Multistage problemNon-Markovian difficulties

Multistage optimization

minimize Ec(ξ,x(ξ)

)subject to x ∈ X,

x nonanticipativex(·) is adapted (nonanticipative)iff

x(ξ0, . . . , ξT

)=

x0(ξ0)x1(ξ0, ξ1)

...xt(ξ0, . . . , ξt)...

xT (ξ0, ξ1, . . . , ξT )

A. Pichler risk averse 7

Page 8: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Problem descriptionDiscrete time

In a discrete framework, the sequence of decisions is

x0 ξ1 x1 · · · ξT xT .

inf{E c

(ξ,x(ξ)

): x(·) ∈ X, x(·) adapted

}Problem (Risk aversion)

The risk averse stochastic problem is

minimize R(c0(x0),c1(ξ,x1), . . . ,cT (ξ,xT )

)x0 ∈ X0, . . . ,xt ∈ Xt(xt−1, ξ)

A. Pichler risk averse 8

Page 9: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Problem descriptionDiscrete time

In a discrete framework, the sequence of decisions is

x0 ξ1 x1 · · · ξT xT .

inf{E c

(ξ,x(ξ)

): x(·) ∈ X, x(·) adapted

}Problem (Risk aversion)The risk averse stochastic problem is

minimize R(c0(x0),c1(ξ,x1), . . . ,cT (ξ,xT )

)x0 ∈ X0, . . . ,xt ∈ Xt(xt−1, ξ)

A. Pichler risk averse 8

Page 10: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Risk

ExampleIn the simplest case,

R(c0(ξ,x0(ξ)

), . . . ,cT

(ξ,xT (ξ)

))= E

T∑t=0

ct(ξ,xt(ξ)

).

Problem

inf{R(c0(ξ,x0(ξ)

), . . . ,cT

(ξ,xT (ξ)

)): x ∈ X, x(·) adapted

}.

A. Pichler risk averse 9

Page 11: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Outline

1 The discrete settingThe general multistageproblemDynamic programming

2 Continuous timeGeneratorsRisk generator

3 Spanning horizonsNested ExpressionsExplicit definition

4 Hamilton Jacobi BellmanHamilton JacobiFurther assessments of riskApplications

5 References

A. Pichler risk averse 10

Page 12: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Towards dynamic programmingThe Bellman principle

Figure: Latticeapproximation

min R(c0(x0),c1(ξ,x1), . . . ,cT (ξ,xT )

),

s.t. x0 ∈ X0, xt ∈ Xt(xt−1, ξ),t = 1, . . . ,T .

Definition (Time consistent)

The transition functionals are recursive,if

Rt,u(Yt , . . . ,Yu)=Rt,v

(Yt , . . . ,Yv−1, Rv ,u (Yv , . . . ,Yu)

).

A. Pichler risk averse 11

Page 13: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Towards dynamic programmingExamples

Conditional risk functionalsSemideviation β�Ft

SD (Y | Ft) := E [Y | Ft ] +β ·E[(Y −E [Y | Ft ])+ | Ft

],

Average Value-at-Risk α�Ft

AV@Rα (Y | Ft) := ess infq�Ft

q+ 11−α E

[(Y −q)+ | Ft

],

Entropic Value-at-Risk α�Ft

EV@Rα (Y | Ft) := ess inf0<t�Ft

1t log 1

1−α exp(E [Y | Ft ]) .

A. Pichler risk averse 12

Page 14: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Towards dynamic programmingExamples

Conditional risk functionalsSemideviation β�Ft

SD (Y | Ft) := E [Y | Ft ] +β ·E[(Y −E [Y | Ft ])+ | Ft

],

Average Value-at-Risk α�Ft

AV@Rα (Y | Ft) := ess infq�Ft

q+ 11−α E

[(Y −q)+ | Ft

],

Entropic Value-at-Risk α�Ft

EV@Rα (Y | Ft) := ess inf0<t�Ft

1t log 1

1−α exp(E [Y | Ft ]) .

A. Pichler risk averse 12

Page 15: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Towards dynamic programmingExamples

Conditional risk functionalsSemideviation β�Ft

SD (Y | Ft) := E [Y | Ft ] +β ·E[(Y −E [Y | Ft ])+ | Ft

],

Average Value-at-Risk α�Ft

AV@Rα (Y | Ft) := ess infq�Ft

q+ 11−α E

[(Y −q)+ | Ft

],

Entropic Value-at-Risk α�Ft

EV@Rα (Y | Ft) := ess inf0<t�Ft

1t log 1

1−α exp(E [Y | Ft ]) .

A. Pichler risk averse 12

Page 16: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Dynamic programming equations

Proposition (Bellman equations, recursive transitions [2018])

VT (ξ,xT−1) := ess infxT∈XZ (xT−1,ξ)

cT (ξ,xT ),

Vt(ξ,xt−1) := ess infxt∈Xt (ξ,xt−1)

Rt:t+1 (ct(ξ,xt), Vt+1(ξ,xt)) .

V0 solves the problem

minimize R(c0(x0),c1(ξ,x1), . . . ,cT (ξ,xT )

),

subject to x0 ∈ X0, xt ∈ Xt(xt−1, ξ),t = 1, . . . ,T .

A. Pichler risk averse 13

Page 17: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Dynamic programming equations

Proposition (Bellman equations, recursive transitions [2018])

VT (ξ,xT−1) := ess infxT∈XZ (xT−1,ξ)

cT (ξ,xT ),

Vt(ξ,xt−1) := ess infxt∈Xt (ξ,xt−1)

Rt:t+1(ct(ξ,xt), Vt+1(ξ,xt)

).

V0 solves the problem

minimize R(c0(x0),c1(ξ,x1), . . . ,cT (ξ,xT )

),

subject to x0 ∈ X0, xt ∈ Xt(xt−1, ξ),t = 1, . . . ,T .

A. Pichler risk averse 13

Page 18: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Outline

1 The discrete settingThe general multistageproblemDynamic programming

2 Continuous timeGeneratorsRisk generator

3 Spanning horizonsNested ExpressionsExplicit definition

4 Hamilton Jacobi BellmanHamilton JacobiFurther assessments of riskApplications

5 References

A. Pichler risk averse 14

Page 19: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Decisions under uncertaintyThe Wiener setting

The motion is generated by

dXt = bdt +σdWt

Definition (Generator)For a smooth function φ,

Gφ(t, ξ) := lim∆t→0

1∆t E

[φ(t + ∆t,Xt+∆t)−φ(t, ξ)

∣∣∣∣∣Xt = ξ

].

A. Pichler risk averse 15

Page 20: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Ito’s formula

DefinitionRecall the generator,

Gφ(t, ξ) := lim∆t→0

1∆t E

[φ(t + ∆t,Xt+∆t)−φ(t, ξ)

∣∣∣∣∣Xt = ξ

].

Lemma (Ito)For dXt = bdt +σdWt it holds that

1 For φ= 1, Gφ= 0;2 for φ(ξ) = ξ, then Gφ= b, the drift;3 for φ(ξ) = ξ2, then Gφ= 2b ξ+σ2, the volatility;4 for general φ(ξ),

G = ∂

∂t +b ∂∂ξ

+ 12σ

2 ∂2

∂ξ2.

A. Pichler risk averse 16

Page 21: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Ito’s formula

DefinitionRecall the generator,

Gφ(t, ξ) := lim∆t→0

1∆t E

[φ(t + ∆t,Xt+∆t)−φ(t, ξ)

∣∣∣∣∣Xt = ξ

].

Lemma (Ito)For dXt = bdt +σdWt it holds that

1 For φ= 1, Gφ= 0;2 for φ(ξ) = ξ, then Gφ= b , the drift;3 for φ(ξ) = ξ2, then Gφ= 2b ξ+σ2, the volatility;4 for general φ(ξ),

G = ∂

∂t +b ∂∂ξ

+ 12σ

2 ∂2

∂ξ2.

A. Pichler risk averse 16

Page 22: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Ito’s formulaDefinitionRecall the generator,

Gφ(t, ξ) := lim∆t→0

1∆t E

[φ(t + ∆t,Xt+∆t)−φ(t, ξ)

∣∣∣∣∣Xt = ξ

].

Lemma (Ito)For dXt = bdt +σdWt it holds that

1 For φ= 1, Gφ= 0;2 for φ(ξ) = ξ, then Gφ= b, the drift;3 for φ(ξ) = ξ2, then Gφ= 2b ξ+ σ2 , the volatility;4 for general φ(ξ),

G = ∂

∂t +b ∂∂ξ

+ 12σ

2 ∂2

∂ξ2.

A. Pichler risk averse 16

Page 23: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Ito’s formulaDefinitionRecall the generator,

Gφ(t, ξ) := lim∆t→0

1∆t E

[φ(t + ∆t,Xt+∆t)−φ(t, ξ)

∣∣∣∣∣Xt = ξ

].

Lemma (Ito)For dXt = bdt +σdWt it holds that

1 For φ= 1, Gφ= 0;2 for φ(ξ) = ξ, then Gφ= b, the drift;3 for φ(ξ) = ξ2, then Gφ= 2b ξ+σ2, the volatility;4 for general φ(ξ),

G = ∂

∂t +b ∂∂ξ

+ 12σ

2 ∂2

∂ξ2.

A. Pichler risk averse 16

Page 24: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Outline

1 The discrete settingThe general multistageproblemDynamic programming

2 Continuous timeGeneratorsRisk generator

3 Spanning horizonsNested ExpressionsExplicit definition

4 Hamilton Jacobi BellmanHamilton JacobiFurther assessments of riskApplications

5 References

A. Pichler risk averse 17

Page 25: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Problems under uncertainty

Problem

Gφ(t, ξ) := lim∆t→0

1∆t AV@Rα

[φ(t + ∆t,Xt+∆t)−φ(t, ξ)

∣∣∣∣∣Xt = ξ

]=∞ : degenerate

RemarkFor Y ∼N (µ,∆t),

AV@Rα(Y )

= µ+√

∆tϕ(Φ−1(α)

)1−α .

Escape

α(∆t)

= Φ(−√− logα ·∆t

)∼√

∆tlog ∆t .

A. Pichler risk averse 18

Page 26: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Other risk measures?Optimal decisions

Definition (Semi-deviation)Consider the semi-deviation

SDp,β(Y ) := EY +√β ·∥∥∥(Y −EY )+

∥∥∥p

for β ∈ (0,1), then, for Y ∼N (µ,σ2),

SDp,β(Y ) = µ+σ√β ·

√2

(2√π)

1p

Γ(1+p

2

) 1p

;

SD1,β(Y ) = µ+σ√β · 1√

2π.

A. Pichler risk averse 19

Page 27: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Other risk measures?Optimal decisions

Definition (Semi-deviation)Consider the semi-deviation

SDp,β(Y ) := EY +√β ·∥∥∥(Y −EY )+

∥∥∥p

for β ∈ (0,1), then, for Y ∼N (µ,σ2),

SDp,β(Y ) = µ+ σ√β ·

√2

(2√π)

1p

Γ(1+p

2

) 1p

;

SD1,β(Y ) = µ+ σ√β · 1√

2π.

A. Pichler risk averse 19

Page 28: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Other risk measures?Optimal decisions

PropositionThe semi-deviation generator is

Gφ(t, ξ) := lim∆t→0

1∆t SDβ·∆t

[φ(t + ∆t,Xt+∆t)−φ(t, ξ)

∣∣∣∣∣Xt = ξ

]

isGφ(t, ξ) = ∂

∂t φ+b ∂∂ξφ+ 1

2σ2 ∂

2

∂ξ2φ+ β̃ ·

∣∣∣∣σ · ∂∂ξφ∣∣∣∣ ,

where

β̃ :=√β ·

√2

(2√π)

1p

Γ(1+p

2

) 1p.

A. Pichler risk averse 20

Page 29: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Other risk measures?Optimal decisions

PropositionThe semi-deviation generator is

Gφ(t, ξ) := lim∆t→0

1∆t SD

β ·∆t

[φ(t + ∆t,Xt+∆t)−φ(t, ξ)

∣∣∣∣∣Xt = ξ

]

is

Gφ(t, ξ) = ∂

∂t φ+b ∂∂ξφ+ 1

2σ2 ∂

2

∂ξ2φ +β̃ ·

∣∣∣∣σ · ∂∂ξφ∣∣∣∣ ,

where

β̃ :=√β ·

√2

(2√π)

1p

Γ(1+p

2

) 1p.

A. Pichler risk averse 20

Page 30: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Entropic generatorRisk generator

Definition (Risk generator)The entropic generator is

Gφ(t, ξ) := lim∆t→0

1∆t EV@R

β ·∆t

[φ(t + ∆t,Xt+∆t)−φ(t, ξ)

∣∣∣∣∣Xt = ξ

].

PropositionIt holds that

Gφ= ∂

∂t φ+b ∂∂ξφ+ 1

2σ2 ∂

2

∂ξ2φ+

√2β∣∣∣∣σ · ∂∂ξφ

∣∣∣∣is not linear any longer.

A. Pichler risk averse 21

Page 31: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Entropic generatorRisk generator

Definition (Risk generator)The entropic generator is

Gφ(t, ξ) := lim∆t→0

1∆t EV@Rβ·∆t

[φ(t + ∆t,Xt+∆t)−φ(t, ξ)

∣∣∣∣∣Xt = ξ

].

PropositionIt holds that

Gφ= ∂

∂t φ+b ∂∂ξφ+ 1

2σ2 ∂

2

∂ξ2φ +

√2β∣∣∣∣σ · ∂∂ξφ

∣∣∣∣is not linear any longer.

A. Pichler risk averse 21

Page 32: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Entropic generatorRisk generator

Definition (Risk generator)The entropic generator is

Gφ(t, ξ) := lim∆t→0

1∆t EV@Rβ·∆t

[φ(t + ∆t,Xt+∆t)−φ(t, ξ)

∣∣∣∣∣Xt = ξ

].

PropositionIt holds that

Gφ= ∂

∂t φ+b ∂∂ξφ+ 1

2σ2 ∂

2

∂ξ2φ +

√2β∣∣∣∣σ · ∂∂ξφ

∣∣∣∣is not linear any longer.

A. Pichler risk averse 21

Page 33: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Outline

1 The discrete settingThe general multistageproblemDynamic programming

2 Continuous timeGeneratorsRisk generator

3 Spanning horizonsNested ExpressionsExplicit definition

4 Hamilton Jacobi BellmanHamilton JacobiFurther assessments of riskApplications

5 References

A. Pichler risk averse 22

Page 34: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Nested expressionsOptimal decisions

Problem (Journal of Indian Mathematical Society)What is the nested expression√

1+2√1+3

√1+4

√1+5 . . .= ?

Figure: Srinivasa Ramanujan, 1887–1920: the man who knew infinityA. Pichler risk averse 23

Page 35: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Dynamic nestingsRisk averse

Definition (by recursivity)

Rti :tn (Y |Fti ) :=Rti(Rti+1 · · ·

(Rtn−1

(Y∣∣Ftn−1

)· · ·∣∣Fti+1

)|Fti

).

Tower property of the Expectation:

EY = E[E [Y | Ft ]

].

PropositionFor YT = Yti +

∑n−1j=i ∆Ytj and ∆Yt �Ft it holds that

Rt0:T (YT |Fti ):= Yt0 +Rt0 (∆Yt0 · · ·+Rtn−1

(∆Ytn−1

∣∣Ftn−1

)· · · |Ft1 |Ft0

)A. Pichler risk averse 24

Page 36: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Risk martingalesLemma (Dual representation involves stochastic processes)

nEV@R0:Tβ (Y ) =

= sup

E [Y ZT ]

∣∣∣∣∣∣∣E[Zti logZti

∣∣Fti−1

]≤ βi−1 ·∆ti−1Zti−1 +Zti−1 logZti−1 ,

E[Zti

∣∣Fti−1

]= Zti−1 , 0≤ Zti C Fti for all i

Proposition (Tower properties)

Yt := nEV@Rβ(Y | Ft)

is a risk martingale

Yt = nEV@Rβ(Yt+1 | Ft)

is a risk martingale.

Yt ≥ E(Yt+1 | Ft).

is a supermartingale withrespect to E.

A. Pichler risk averse 25

Page 37: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Risk martingalesLemma (Dual representation involves stochastic processes)

nEV@R0:Tβ (Y ) =

= sup

E [Y ZT ]

∣∣∣∣∣∣∣E[Zti logZti

∣∣Fti−1

]≤ βi−1 ·∆ti−1Zti−1 +Zti−1 logZti−1 ,

E[Zti

∣∣Fti−1

]= Zti−1 , 0≤ Zti C Fti for all i

Proposition (Tower properties)

Yt := nEV@Rβ(Y | Ft)

is a risk martingale

Yt = nEV@Rβ(Yt+1 | Ft)

is a risk martingale.

Yt ≥ E(Yt+1 | Ft).

is a supermartingale withrespect to E.

A. Pichler risk averse 25

Page 38: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Risk martingalesLemma (Dual representation involves stochastic processes)

nEV@R0:Tβ (Y ) =

= sup

E [Y ZT ]

∣∣∣∣∣∣∣E[Zti logZti

∣∣Fti−1

]≤ βi−1 ·∆ti−1Zti−1 +Zti−1 logZti−1 ,

E[Zti

∣∣Fti−1

]= Zti−1 , 0≤ Zti C Fti for all i

Proposition (Tower properties)

Yt := nEV@Rβ(Y | Ft)

is a risk martingale

Yt = nEV@Rβ(Yt+1 | Ft)

is a risk martingale.

Yt ≥ E(Yt+1 | Ft).

is a supermartingale withrespect to E.

A. Pichler risk averse 25

Page 39: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Risk martingalesLemma (Dual representation involves stochastic processes)

nEV@R0:Tβ (Y ) =

= sup

E [Y ZT ]

∣∣∣∣∣∣∣E[Zti logZti

∣∣Fti−1

]≤ βi−1 ·∆ti−1Zti−1 +Zti−1 logZti−1 ,

E[Zti

∣∣Fti−1

]= Zti−1 , 0≤ Zti C Fti for all i

Proposition (Tower properties)

Yt := nEV@Rβ(Y | Ft)

is a risk martingale

Yt = nEV@Rβ(Yt+1 | Ft)

is a risk martingale.

Yt ≥ E(Yt+1 | Ft) .

is a supermartingale withrespect to E.

A. Pichler risk averse 25

Page 40: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Outline

1 The discrete settingThe general multistageproblemDynamic programming

2 Continuous timeGeneratorsRisk generator

3 Spanning horizonsNested ExpressionsExplicit definition

4 Hamilton Jacobi BellmanHamilton JacobiFurther assessments of riskApplications

5 References

A. Pichler risk averse 26

Page 41: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Extension to continuous timeNested risk functionals

DefinitionFor β(·) Riemann integrable,

nEV@Rt:Tβ(·)(Y | Ft) := ess inf

β̃(·)≥β(·)nEV@R

β̃(·)(Y | Ft),

where the infimum is among simple functions β̃(·)≥ β(·).

RemarkFor YT = Yti +

∑n−1j=i ∆Ytj with ∆Ytj :=

∫ tjtj−1 c(·)dt it holds that

Rt0:T (YT |Fti ):= Yt0 +Rt0 (∆Yt0 · · ·+Rtn−1

(∆Ytn−1

∣∣Ftn−1

)· · · |Ft1 |Ft0

)

A. Pichler risk averse 27

Page 42: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Extension to continuous timeNested risk functionals

DefinitionFor β(·) Riemann integrable,

nEV@Rt:Tβ(·)(Y | Ft) := ess inf

β̃(·)≥β(·)nEV@R

β̃(·)(Y | Ft),

where the infimum is among simple functions β̃(·)≥ β(·).

RemarkFor YT = Yti +

∑n−1j=i ∆Ytj with ∆Ytj :=

∫ tjtj−1 c(·)dt it holds that

Rt0:T (YT |Fti ):= Yt0 +Rt0 (∆Yt0 · · ·+Rtn−1

(∆Ytn−1

∣∣Ftn−1

)· · · |Ft1 |Ft0

)

A. Pichler risk averse 27

Page 43: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Explicit evaluations for nestings

Proposition (Wiener process)For the Wiener process, Wt ,

nEV@Rβ(WT ) = T√2β, or

nEV@Rβ(·)(WT ) =∫ T

0

√2β(t)dt.

Proposition (Ornstein–Uhlenbeck)

The process

dXt =θ(µ−Xt)dt+σdWt ,

has

nEV@Rβ(XT ) =e−Tθx0 +µ(1− e−θT )

+ σ√2βθ

(1− e−θT

)A. Pichler risk averse 28

Page 44: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Explicit evaluations for nestings

Proposition (Wiener process)For the Wiener process, Wt ,

nEV@Rβ(WT ) = T√2β, or

nEV@Rβ(·)(WT ) =∫ T

0

√2β(t)dt.

Proposition (Ornstein–Uhlenbeck)

The process

dXt =θ(µ−Xt)dt+σdWt ,

has

nEV@Rβ(XT ) =e−Tθx0 +µ(1− e−θT )

+ σ√2βθ

(1− e−θT

)A. Pichler risk averse 28

Page 45: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Continuous time martingalesDual involves stochastic processes in continuous time

Lemma (Dual representation involves stochastic processes)

nEV@R0:Tβ (Y | Ft) =

= sup

E [Y ZT ]

∣∣∣∣∣∣∣∣∣E [Zs logZs |Fu ]≤ Zu

∫ su β(r)dr +Zu logZu

E [Zs |Fu ] = Zu,for t ≤ u ≤ s ≤ T and Zs C Fs

A. Pichler risk averse 29

Page 46: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Outline

1 The discrete settingThe general multistageproblemDynamic programming

2 Continuous timeGeneratorsRisk generator

3 Spanning horizonsNested ExpressionsExplicit definition

4 Hamilton Jacobi BellmanHamilton JacobiFurther assessments of riskApplications

5 References

A. Pichler risk averse 30

Page 47: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Hamilton Jacobi Bellman equationOptimal decisions

(a) William Rowan Hamilton,1805 – 1865

(b) Carl Gustav JacobJacobi, 1804 – 1851

(c) Richard Bellman,1920 – 1984

A. Pichler risk averse 31

Page 48: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Hamilton Jacobi Bellman equationRisk neutral — the classical situation

Proposition (Risk neutral)The risk neutral value function

V (t, ξ) := infx(·) adapted

E

[∫ ∞t

c(s,Xs ,x(s,Xs)

)ds∣∣∣∣Xt = ξ

]satisfies the HJB equations

∂t V =H(t, ξ,∇ξV ,∇2

ξV)

with Hamiltonian

H (t, ξ;g ,H) := supx∈X

{−b(x) ·g − 1

2σ(x)2 ·H︸ ︷︷ ︸−G

−c(x)}.

A. Pichler risk averse 32

Page 49: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Hamilton Jacobi Bellman equationRisk neutral — the classical situation

Proposition (Risk neutral)The risk neutral value function

V (t, ξ) := infx(·) adapted

E

[∫ ∞t

c(s,Xs ,x(s,Xs)

)ds∣∣∣∣Xt = ξ

]satisfies the HJB equations

∂t V =H(t, ξ,∇ξV ,∇2

ξV)

with Hamiltonian

H (t, ξ;g ,H) := supx∈X

{−b(x) ·g − 1

2σ(x)2 ·H︸ ︷︷ ︸−G

−c(x)}.

A. Pichler risk averse 32

Page 50: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Hamilton Jacobi Bellman equationRisk averse

Proposition (Risk averse)The value function

V (t, ξ) := infx(·) adapted

nR(∫ ∞

tc(s,Xs ,x(s,Xs)

)ds∣∣∣∣Xt = ξ

)satisfies the HJB equations

∂t V =H(t, ξ,∇ξV ,∇2

ξV)

with Hamiltonian

H (t, ξ,g ,H) := supx∈X

{−b(x) ·g− 1

2σ(x)2 ·H−c(x)−√2β · |σ ·g |

}.

A. Pichler risk averse 33

Page 51: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Hamilton Jacobi Bellman equationRisk averse

Proposition (Risk averse)The value function

V (t, ξ) := infx(·) adapted

nR(∫ ∞

tc(s,Xs ,x(s,Xs)

)ds∣∣∣∣Xt = ξ

)satisfies the HJB equations

∂t V =H(t, ξ,∇ξV ,∇2

ξV)

with Hamiltonian

H (t, ξ,g ,H) := supx∈X

{−b(x) ·g− 1

2σ(x)2 ·H−c(x) −√2β · |σ ·g |

}.

A. Pichler risk averse 33

Page 52: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Outline

1 The discrete settingThe general multistageproblemDynamic programming

2 Continuous timeGeneratorsRisk generator

3 Spanning horizonsNested ExpressionsExplicit definition

4 Hamilton Jacobi BellmanHamilton JacobiFurther assessments of riskApplications

5 References

A. Pichler risk averse 34

Page 53: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Other ways of measuring riskExplicit expression

ConsiderR(Y ) := u−1

(Eu(Y )

).

PropositionThe generator is

Gφ(t, ξ) := lim∆t↓0

1∆tR

(φ(t + ∆t,Xt+∆t)−φ(t, ξ)

∣∣∣∣∣Xt = ξ

)

=(∂Φ∂t +b ∂Φ

∂ξ+ 1

2σ2 ∂

2Φ∂ξ2

)(t, ξ)

+ 12u′′(Φ(t, ξ))u′ (Φ(t, ξ))

(σ(t, ξ)∂Φ

∂ξ(t, ξ)

)2.

A. Pichler risk averse 35

Page 54: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Other ways of measuring riskExplicit expression

ConsiderR(Y ) := u−1

(Eu(Y )

).

PropositionThe generator is

Gφ(t, ξ) := lim∆t↓0

1∆tR

(φ(t + ∆t,Xt+∆t)−φ(t, ξ)

∣∣∣∣∣Xt = ξ

)

=(∂Φ∂t +b ∂Φ

∂ξ+ 1

2σ2 ∂

2Φ∂ξ2

)(t, ξ)

+ 12u′′(Φ(t, ξ))u′ (Φ(t, ξ))

(σ(t, ξ)∂Φ

∂ξ(t, ξ)

)2.

A. Pichler risk averse 35

Page 55: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Special cases: exponential utility

The special case u(x) = eλx

The generator forR(Y ) := 1

λlogEeλY

is

Gφ(t, ξ) =(∂Φ∂t +b ∂Φ

∂ξ+ 1

2σ2 ∂

2Φ∂ξ2

)(t, ξ)

+ 12λ∣∣∣∣σ(t, ξ)∂Φ

∂ξ(t, ξ)

∣∣∣∣2 .

A. Pichler risk averse 36

Page 56: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Special cases: exponential utility

The special case u(x) = eλx

The generator forR(Y ) := 1

λlogEeλY

is

Gφ(t, ξ) =(∂Φ∂t +b ∂Φ

∂ξ+ 1

2σ2 ∂

2Φ∂ξ2

)(t, ξ)

+ 12 λ

∣∣∣∣σ(t, ξ)∂Φ∂ξ

(t, ξ)∣∣∣∣2 .

A. Pichler risk averse 36

Page 57: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Special cases: power utility

The special case u(x) = xκ

The generator forR(Y ) := (EY κ)1/κ

is

Gφ(t, ξ) =(∂Φ∂t +b ∂Φ

∂ξ+ 1

2σ2 ∂

2Φ∂ξ2

)(t, ξ)

+ 12

(κ−1)Φκ−2(t, ξ)Φκ−1(t, ξ) ·

∣∣∣∣σ(t, ξ) ∂Φ∂ξ

(t, ξ)∣∣∣∣2 .

A. Pichler risk averse 37

Page 58: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Special cases: power utility

The special case u(x) = xκ

The generator forR(Y ) := (EY κ)1/κ

is

Gφ(t, ξ) =(∂Φ∂t +b ∂Φ

∂ξ+ 1

2σ2 ∂

2Φ∂ξ2

)(t, ξ)

+ 12

(κ−1)Φκ−2(t, ξ)Φκ−1(t, ξ) ·

∣∣∣∣σ(t, ξ) ∂Φ∂ξ

(t, ξ)∣∣∣∣2 .

A. Pichler risk averse 37

Page 59: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Outline

1 The discrete settingThe general multistageproblemDynamic programming

2 Continuous timeGeneratorsRisk generator

3 Spanning horizonsNested ExpressionsExplicit definition

4 Hamilton Jacobi BellmanHamilton JacobiFurther assessments of riskApplications

5 References

A. Pichler risk averse 38

Page 60: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Differential equationOptimal control

Lemma (Black and Scholes)

0 = ∂tV + σ2

2 ∂xxV +b∂xV −β |σ ·∂xV |− r V

V (T ,x) = p(x)

90 100 110 120 130 140 150 160 170strike price

0.3

0.4

0.5

0.6

0.7

0.8

impl

ied

vola

tility

Volatility curves for call prices on APPL

C( ) = 0.2C( ) = 0.1C( ) = 0

A. Pichler risk averse 39

Page 61: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Differential equationOptimal control

Lemma (Black and Scholes)

0 = ∂tV + σ2

2 ∂xxV + b∂xV −β |σ ·∂xV | − r V

V (T ,x) = p(x)

90 100 110 120 130 140 150 160 170strike price

0.3

0.4

0.5

0.6

0.7

0.8

impl

ied

vola

tility

Volatility curves for call prices on APPL

C( ) = 0.2C( ) = 0.1C( ) = 0

A. Pichler risk averse 39

Page 62: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Surprise:Explicit expression

The wealth process iswt := (1−πt)Bt +πtSt ,

with

V (t,w) := maxπt ,ct

nR[∫ T

te−ρsu(cs)ds + e−ρTp(T )u(wT )

∣∣∣∣∣wt = w].

Proposition (Merton’sfraction)Therefore is an explicitexpression for Merton’s fractionπ under risk,

π =µ −σ

√2β − r

σ2. Figure: Robert Merton,

1944. Nobel MemorialPrize in Economic Sciences(1997) A. Pichler risk averse 40

Page 63: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

Summary

nEV@Rt:Tβ(·)(Y | Ft) := ess inf

β̃(·)≥β(·)nEV@R

β̃(·)(Y | Ft),

Gφ= ∂

∂t φ+b ∂∂ξφ+ 1

2σ2 ∂

2

∂ξ2φ+

√2β∣∣∣∣σ · ∂∂ξφ

∣∣∣∣V (t, ξ) := inf

x(·) adaptednR

(∫ ∞t

c(s,Xs ,x(s,Xs)

)ds∣∣∣∣Xt = ξ

)

H (t, ξ,g ,H) := supx∈X

{−b(x)·g− 1

2σ(x)2 ·H−c(x)−√2β ·|σ ·g |

}.

A. Pichler risk averse 41

Page 64: Riskaversedynamicoptimization · 2019. 11. 18. · Stochasticoptimization [Markowitz,1952] Primal minimize var x>ξ subjecttox∈Rd, Ex>ξ ≥µ, Xd i=1 x i = 1 (x i ≥0) Dual maximize

References and discussion[Dentcheva and Ruszczyński, 2018], [Peng, 1992],

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999).Coherent Measures of Risk.Mathematical Finance, 9:203–228.

Dentcheva, D. and Ruszczyński, A. (2018).Time-coherent risk measures for continuous-time Markov chains.SIAM Journal on Financial Mathematics, 9(2):690–715.

Deprez, O. and Gerber, H. U. (1985).On convex principles of premium calculation.Insurance: Mathematics and Economics, 4(3):179–189.

Markowitz, H. M. (1952).Portfolio selection.The Journal of Finance, 7(1):77–91.

Peng, S. (1992).A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation.Stochastics and Stochastic Reports, 38(2):119–134.

Pichler, A. and Schlotter, R. (2018).Martingale characterizations of risk-averse stochastic optimization problems.Mathematical Programming.

A. Pichler risk averse 42