RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr....

29
RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad Autónoma de Sinaloa Mazatlán, México. 11/6/15 XV Mexican Workshop on Particles and Fields 1 XV MEXICAN WORKSHOP ON PARTICLES AND FIELDS

Transcript of RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr....

Page 1: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE

Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad Autónoma de Sinaloa Mazatlán, México.

11/6/15 XV Mexican Workshop on Particles and Fields 1

XV MEXICAN WORKSHOP ON PARTICLES AND FIELDS

Page 2: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

L = Nb2kbγ f

4πβ*εnF

Beam parameters The luminosity is a famous parameter in detectors …

11/6/15 XV Mexican Workshop on Particles and Fields 2

Nb Number of particles per bunch Kb Number of bunches per beam β* Beta functionγ Relativistic factor εn Normalized emittance BR Branching Ratio f collision frequency

LHC Luminosity from 1033 to 1034 cm-2 s-1

Tevatron Max Luminosity 1032 cm-2 s-1

Ldel = t < L > barn−1 Nevent = BRσLdel

Page 3: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

L = Nb2kbγ f

4πβ*εnF

Beam parameters The luminosity is a famous parameter in detectors …

11/6/15 XV Mexican Workshop on Particles and Fields 3

LHC Luminosity from 1033 to 1034 cm-2 s-1

Tevatron Max Luminosity 1032 cm-2 s-1

Ldel = t < L > barn−1 Nevent = BRσLdel

•  A good luminosity is the difference between wait 1 o 10 years!

There is a group in Guanajuato working in this parameter Two Mexicans working here

Page 4: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Electron cloud issues in the LHC Humberto Maury – Universidad de Guanajuato Gerardo Guillermo - CINVESTAV • Electron cloud: a set of electrons created inside the LHC

vacuum chamber by ionization of the residual gas or by photoemission due to beam-induced synchrotron radiation. It can affect the accelerator performance and or degraded beam quality.

• Effects: •  pressure increase by several orders of magnitude. •  Beam instabilities •  Additional heat load to the cryogenic system.

L = Nb2kbγ f

4πβ*εnF

XV Mexican Workshop on Particles and Fields

Page 5: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Space charge Ø Coulomb´s force separate the same charge particles from

each other Ø High intensity beams suffer from instabilities due severe

space charge problems

11/6/15 XV Mexican Workshop on Particles and Fields 5

I = qeNb

tL = Nb2kbγ f

4πβ*εnF

Page 6: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Beam space charge 11/6/15 XV Mexican Workshop on Particles and Fields 6

)( BvEqF ×+=

F = q(E − vβEc)

= q(E −β 2E) = q Eγ 2

Er =ρr2ε0

Consider a longitudinally cylindrical beam with constant charge density ρ and current I. The magnetic field creates an opposite force to the electric field

J = Iπa2

Bθ =µ0Jr2

=µ0Ir2πa2

=βEr

c

I ρ

Energy γ (protons) γ (electrons)45Kev 1.00004 1.088 50 Mev 1.05328 98.084 160 MeV 1.17052 314.112 1 Gev 2.06574 1957.145 1 TeV 1066.7889 1956952.375

Page 7: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Emittance •  The region in phase space that the particles in a beam

occupy is called the beam emittance

• Mm.mrad? mrad from px/pz •  The goal in every accelerator is to have the lower beam

emittance achievable

11/6/15 XV Mexican Workshop on Particles and Fields 7

ε =r2c

kTm

∝T1/2

Brighness∝ 1εyεx

The emittance always get worse(only by losing particles can get better)

Page 8: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Fermilab Accelerator Complex

11/6/15 XV Mexican Workshop on Particles and Fields 8

[1] http://www.fnal.gov/

Page 9: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Cern Accelerator complex 11/6/15 XV Mexican Workshop on Particles and Fields 9

Linac 4

Page 10: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Why we need Linacs before the Rings?

•  The space charge limits the beam intensity inside the ring

11/6/15 XV Mexican Workshop on Particles and Fields 10

ΔQ∝ Nb

εnβγ2

[1] CERN Courier, Sep 2012. PS BOOSTER Tune shift using Linac2.

Page 11: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Linac 4 vs Linac2 11/6/15 XV Mexican Workshop on Particles and Fields 11

u H- Beam u 160 Mev u Lower Emittance than Linac2

Linac 4 Linac 2 Ions H- P Energy 160 MeV 50 MeV Emittance 0.4 mm mrad 1 mm mrad

Frequency 352.2 MHz 202.56 MHz Beam Current 40 mA 170 mA. Pulse Lenght 400 us 100 us

Source LEBT

ΔQ∝ Nb

εnβγ2

Page 12: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Why H-?

• Because the Space charge repulsion is easier to insert a negative beam inside a positive beam

•  In therory the efficiency will be 99% in transform the H- in to protons

11/6/15 XV Mexican Workshop on Particles and Fields 12

[1] CERN Courier, Sep 2012.

Schematic of H- injection into a circular machine.

Page 13: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

PSB Emittance

11/6/15 XV Mexican Workshop on Particles and Fields 13

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0 100 200 300 400 1-s

norm

. em

ittan

ce [m

m m

rad]

PSB bunch intensity [E10]

•  LHC beams Brightness out of the PSB are mainly determined by space charge during the injection process

G. Romulo Space charge meeting CERN, 19 March, 2015

By inject H- the emittance after the injection will be reduced by half

Present PSB performance for LHC beam production (measurements) PSB performance with

Linac4 for LHC beam production

Page 14: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Where the particles are created? Ø The maximum Nb will be at

the beam source output Ø After been created the

value C will be almost constant

Ø As we get closer to the ion source more physics need to be included in simulations to predict results

11/6/15 XV Mexican Workshop on Particles and Fields 14

C∝ Nb

εn

Page 15: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Source and Beam Extraction 11/6/15 15

The beam energy is calculated by the diference of potential

)( groundsource VVqE −=

The beam is formed by the particles in the plasma taken by the extractor

Plasma extraction potential (meniscus)

Child–Langmuir law

A plasma or discharge chamber

Material input

Power to create a plasma / discharge

A hole to let the ions out!

An extraction system

Ion Beam Plasma

Ground Extractor Potential lines(green)

Electrodes (blue) Ions (Red)

j = 4ε09

2emV 3/2

d 2

XV Mexican Workshop on Particles and Fields

Page 16: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Beam transport under Space charge

•  The envelope of a cylindrically symmetric beam (r) transported along the z-axis can be described by the differential equation:

Ø ko is the focusing strength Ø K0 is the space charge term

11/6/15 XV Mexican Workshop on Particles and Fields 16

ko1 k02 k03

Page 17: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Beam transport simulations

11/6/15 XV Mexican Workshop on Particles and Fields 17

u Envelope code where a set of matrix represent the magnets in the accelerator

u  They are really fast(to obtain the solution it takes a few seconds), and can cover all the accelerator chain in a normal computer without problem

X = RY = R(n)...R(2)R(1)Y

Page 18: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Ray tracing codes

-250

-200

-150

-100

-50

0 0 0.5 1 1.5

Bea

m P

oten

tial (

volts

) (m)

Solve ∇2φ=0

Calculate trajectories and Beam Charge Density ρB

Solve ∇2φ=ρ

Converge

No

yes

Stop

u Is more accurate but the simulation time and resource consumption is higher

Page 19: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Space charge compensation 11/6/15 XV Mexican Workshop on Particles and Fields 19

Full space charge beam transport

80% compensation Beam Direction

Ø  The vacuum is not perfect inside the beam pipe Ø  Range of pressure from 5x10-7 mbar 1x10-5 mbar Ø  The beam ionizes residual gas atoms Ø  The ionized particles from opposite charge are trapped by the beam

potential and same charge particles are expelled to the walls

Ions(Red)

Potential lines (Green)

ρ = ρbeam − ρsecondary

Page 20: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Compensation time

•  The space charge compensation is time dependent

• Beam pulse 500 µs • Baseline 1x10-6 mbar

11/6/15 XV Mexican Workshop on Particles and Fields 20

The beam properties are not constant in time and is necessary to use advanced codes to simulate this effect.

τ =1

vb(σ H 2 (E)nH 2 +σ x (E)nx )

0

20

40

60

80

100

0 200 400 600

RFQ

Tra

nsm

issi

on %

Time(µs)

Page 21: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Linac4 Low energy beam Transport (LEBT) Ø Source Ø Multi step

extraction system Ø LEBT Ø RFQ

11/6/15 XV Mexican Workshop on Particles and Fields 21

Page 22: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Linac4 LEBT elements The system include: •  2XSolenoid

•  Beam focusing •  Matching

•  4XSteerers •  Correct beam center alignment

•  Gas Injection •  Controlling space charge

compensation degree •  Faraday Cup

•  Beam current measurement •  The beam is unbunched in this

stage. • 

Solenoid Effect in the beam 0 0.5 1.0 Z(m) 1.5 2.0

0.05 0 0.05

11/6/15 XV Mexican Workshop on Particles and Fields 22

Ions (red) Conductors (blue)

Page 23: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Linac4 Ion Source and extraction system 11/6/15 XV Mexican Workshop on Particles and Fields 23

•  Electrons (yellow) are extracted along with negative ions (red).

0kV 20kV 10kV 45kV

•  Plasma is created using 2MHz RF in a solenoid coil.

•  The H- is produced in the plasma volume and surfaces

•  A surface near the extraction is coated with cesium, evaporated from an oven at the back of the source.

•  The plasma ions strike the cesium surface and H- are emitted.

35kV

Oystein middtun

0kV

Page 24: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Linac4 source simulation using Ray tracing code

Ø  Beam Current 35 mA

Simulation Measurements

-30 -15 0 15 30

X(mm) Emittance mm.mrad 1 rms (norm) : 0.29 0.55

The absolute value of the emittance is almost 200% bigger in measurements

XV Mexican Workshop on Particles and Fields

Page 25: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Particle in Cell codes (PIC) Secondary ions density Beam density

u The interaction between the beam and the residual gas inside the vacuum pipe generates secondary ions

u  The secondary ions play a major role in the beam transport

u To simulate 1 meter the simulation time goes from 1 day to 3 months

XV Mexican Workshop on Particles and Fields

Page 26: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Space Charge compensation using H2 Ø  Pressure 1.2X10-6 mbar

Ø  Current 35 mA Simulation Measurements

X(mm)

-30 -15 0 15 30

-30 -15 0 15 30 -30 -15 0 15 30

x’(m

rad)

x’

(mra

d)

x’(m

rad)

X(mm)

100 µs

260 µs

400 µs

-30 -15 0 15 30

-30 -15 0 15 30 -30 -15 0 15 30

XV Mexican Workshop on Particles and Fields

Page 27: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Compensation using different gases Ø  H2 N2 and Kr

Ø  Several pressures were used

Simulation Measurements

X(mm)

-30 -15 0 15 30

-30 -15 0 15 30 -30 -15 0 15 30

x’(m

rad)

x’

(mra

d)

x’(m

rad)

X(mm)

H2

-30 -15 0 15 30

-30 -15 0 15 30 -30 -15 0 15 30

Kr

N2

XV Mexican Workshop on Particles and Fields

Page 28: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Summary The beam space charge in the injectors is one of the biggest challenge to reach a higher luminosity in beam colliders At CERN, Linac4 is under construction to mitigate this problem and duplicate the Luminosity. The goal of produce 80 mA in the Linac4 source continue to be a problem A new method to take into account secondary ions created by the beam has been developed The simulation results from the Linac4 beam source agree with the measurements like not other code available today. Some improvements has been made to the beam source at linac4 thanks to the results of the simulations

11/6/15 XV Mexican Workshop on Particles and Fields 28

Page 29: RING INJECTORS LUMINOSITY LIMITS: SPACE CHARGERING INJECTORS LUMINOSITY LIMITS: SPACE CHARGE Dr. Cristhian Alfonso Valerio Lizárraga Facultad de ciencias Físico matemáticas Universidad

Thank you!

Disfruten la playa

11/6/15 XV Mexican Workshop on Particles and Fields

29

Acknowledgement Richard Scrivens Ildefonso León

Guillermo ContrerasCONACYT

And the Linac4 collaboration