Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical...

80
Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16 322675 Fax 32(0)16 322991 http://www.cit.kuleuven.ac.be/cit.

Transcript of Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical...

Page 1: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Rheology and Rheometry

Paula Moldenaers

Department of Chemical Engineering

Katholieke Universiteit Leuven

W. De Croylaan 46, B-3001 Leuven

Tel. 32(0)16 322675 Fax 32(0)16 322991

http://www.cit.kuleuven.ac.be/cit.

Page 2: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

ρειν = flow

Rheology = The Science of Deformation and Flow

Why do we need it?- measure fluid properties- understand structure-flow property relations- modelling flow behaviour- simulate flow behaviour

of melts under processing conditions

Page 3: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Processing conditions shear rate [s-1]

Sedimentation 10-6 –10-4

Leveling 10-3

Extrusion 100-102

Chewing 101 -102

Mixing 101-103

Spraying, brushing 103 -104

Rubbing 104 -105

Injection molding 102 -105

coating flows 105 -106

Page 4: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

How about Newtonian behaviour?

1. Constant viscosity

2. No time effects

3. No normal stresses in shear flow

4. η(ext)/η(shear) = 3

Symbols: ε° ⇒ Dσ ⇒Ts ⇒ σ

Newton’s law: T = -pI +η 2D

Page 5: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Contents

1. Rheological phenomena

2. Constitutive equations2.1. Generalized Newtonian fluids2.2. Linear visco-elasticity2.3. Non-linear viscoelasticity

3. Rheometry

4. Parameters affecting rheology

Page 6: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

1. Rheological Phenomena:

Do real melts behave according to Newton’s law?

Deviation 1:

Mayonnaise: resistance (viscosity) decreases with increasing shear rate: shear thinning

Starch solution: resistance increases with increasing shear rate: shear thickening

This is a non-linearity:

)(γη &

Page 7: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Do real melts behave according to Newton’s law?

G(t) or G(t,γ)

Deviation 2: example silly putty

The response of the material depends on the time scale:* Short times: elastic like behaviour * Long times: liquid-like behaviour

VISCO-ELASTIC BEHAVIOUR

t > τt < τ

Linear non-linear

Page 8: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Weissenberg effect Die Swell

Normal stresses

Do real melts behave according to Newton’s law?Deviation 3:

Page 9: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Do real melts behave according to Newton’s law?

deviation 4: Ductless Syphon

η(ext) > > η(shear)

Page 10: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

In summary: Newtonian behaviour real behaviour

1. Constant viscosity 1. Variable viscosity

2. No time effects 2. Time effects

3. No normal stresses in shear flow 3. Normal stresses

4. η(ext)/η(shear) = 3 4. Large η(ext)

3 dim: T = -pI + η (2D) ?Simple shear: σ = η dγ/dt

Page 11: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Contents

1. Rheological phenomena

2. Constitutive equations2.1. Generalized Newtonian fluids2.2. Linear visco-elasticity2.3. Non-linear viscoelasticity

3. Rheometry

4. Parameters affecting rheology

Page 12: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

2. Constitutive equations2.1 Generalized Newtonian fluids

Examples of non-Newtonian behaviour:

Macosko, 1992

Page 13: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

2.1 Generalized Newtonian fluids

Non-Newtonian behaviour is typical for polymeric solutions and molten polymers

e.g. ABS polymer melt (Cox and Macosko)

Page 14: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

2.1 Generalized Newtonian fluids

DI D 2)II(fpT 21 ⋅+−=

The viscosity is now replaced by a function of the second invariant of 2D

for a shear flow this becomes:

and different forms for this function have been proposed

( )σ η γ γxy = ⋅12& &

With: II2D = 1/ 2 (tr22D – tr (2D)2)

tr = trace = sum of the diagonal elements

Page 15: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Model 1: Power Law

1nnxy

2/)1n(2

kk

2IIkpT

γ=ηγ=σ

⋅⋅+−==

&&

DI D

2 parameters

shear rate (s-1)

0.001 0.01 0.1 1 10 100 1000η

0.001

0.01

0.1

1

10

100

n=0.4, k=1n=0.8, k=1n=1.4, k=0.01

shear rate (s−1)

0 200 400 600 800 1000 1200

σ

0

50

100

150

200

250

300

n<1 : shear-thinningn>1: shear-thickening

Page 16: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Model 2: Ellis model

( )

ηη γ

ηη

σ

0

0

11

1

1

1

=+ ⋅

= +⎡

⎢⎢

⎥⎥

k

II

k

n

n

& ( ) 3 parameters

shear rate (s-1)

0.001 0.01 0.1 1 10 100 1000

η

0.1

1

10

100

1000

log η0

n-1

Page 17: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Model 3: CROSS model

η ηη η γ

−−

=+ ⋅

∞ −0

11

1 k n& ( ) 4 parameters

shear rate (s-1)

1e-3 1e-2 1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

η

0.1

1

10

100

1000

log η0

n-1

log η∞

( )η η

η η−−

=+ ⋅

∞−

0

1

1 22

1 2k II

nD

( )/

3D

Page 18: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Special case: plastic Behaviour

σ σ γ σ γ

σ σ γ

< → = = ⋅

> → ≠

y

y

G& ,

&

0

0

No flow, only deformation Yield stress

Page 19: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

What have we gained in generalized Newtonian?

Newtonian behaviour real behaviour

1. Constant viscosity 1. Variable viscosity

2. No time effects 2. Time effects

3. No normal stresses in shear flow 3. Normal stresses

4. η(ext)/η(shear) = 3 4. Large η(ext)

3 dim: T = -pI + η (2D) T = -pI + η(II2D) (2D)

Simple shear: σ = η dγ/dt

Page 20: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Contents

1. Rheological phenomena

2. Constitutive equations2.1. Generalized Newtonian fluids2.2. Linear visco-elasticity2.3. Non-linear viscoelasticity

3. Rheometry

4. Parameters affecting rheology

Page 21: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

2. Constitutive equations2.2 Linear visco-elasticity

Reference: 2 extremes

Hooke’s Law Newton’s Law(solid mechanics) (fluid mechanics)

σ = G.γ σ = η .dγ/dt

G = modulus (Pa) η = viscosity (Pa.s)Material property material property

Page 22: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Time effects (linear visco-elastic phenomena):

Example 1: creep

Apply constant stress σ

Compliance

J t t( ) ( )=

γσ0

Page 23: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Time effects (linear visco-elastic phenomena):

Example 2: stress relaxation upon step strain

Apply constant strain

Modulus

G(t) = σ(t)/γ

Page 24: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Example for molten LDPE [Laun, Rheol. Acta, 17,1 (1978)]

Page 25: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

How to descibe this behaviour?Example: differential models

Phenomenological models

Hookean spring

Newtonian dashpot

101 G γ=σ

202 γ⋅η=σ &Maxwell Kelvin-Voigt

Page 26: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

γ γ γ

σ σ σ

γ γ γ

γσ σ

η

ση

σ η γ

σ τσ η γ

= +

= =

= +

= +

+⎛⎝⎜

⎞⎠⎟ =

+ =

1 2

1 2

1 2

1

0

2

0

0

00

0

& & &

&&

& &

& &

G

G

Maxwell model:

τ = relaxation time

Page 27: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

ω [rad/s]

0.01 0.1 1 10

G(t)

0

2

4

6

8

10

12

τ

G0

Example: Stress relaxation upon step strain for a Maxwell element

γ γ

σ τσ

σ γ

σγ

τ

= ≥

+ =

= =

= = ⋅ −

0

0 0

0

0

0

0

t

ddt

t G

t G t G t

;

( ) ( ) exp( / )

Page 28: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Generalized Maxwell model to describe molten polymers:

σ σ

σ τ σ η γ

τ

TOT ii

i i i i

ii

iG t G t

= ∑

+ =

= −∑

& &

( ) exp( / )0

Page 29: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Relaxation functions:For a simple Maxwell model: single exponential (single relaxation time τ):

G t G t

G t G t

G t F t d

G t H t d

i i

( ) exp( / )

( ) exp( / )

( ) ( )exp

( ) ( )exp

= −

= −∑

=−⎛

⎝⎜⎞⎠⎟∫

=−⎛

⎝⎜⎞⎠⎟∫

0

0

0

τ

τ

ττ

τ

ττ

ττ

For a generalized Maxwell fluid (discrete number of relaxation times τI:

We can replace the discrete relaxation times by a continuous spectrum:

Or based on a logaritmic time scale : the relaxation spectrum is defined by:

Page 30: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Time effects (linear visco-elastic phenomena): Example 3: Oscillatory experiments

STRAIN

t

i t

STRAIN RATE

t t

i t

HOOKEAN SOLID

G G tG i t

NEWTONIAN FLUID

ti i t i

:

sin( )

exp( )

& cos( ) sin( )

& i exp( )

sin( )exp( )

& sin( )exp( )

γ γ ω

γ γ ω

γ γ ω ω γ ω

γ ωγ ω

σ γ γ ωσ γ ω

σ ηγ ηγ ω ωσ η γ ω ω η γω

=

=

= = + °

=

= ==

= = + °= =

0

0

0 0

0

00

00

90

90

Page 31: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

[ ]( ) ( )[ ]

VISCOELASTIC MATERIAL

G i

G i

complex ulus

G

G t

G t tG t G t

G t G t

G iG

el viscσ σ σ

σ γ ωηγ

σ ωη γ

σ γ

σ γ ω δ

σ γ ω δ ω δσ δ γ ω δ γ ω

σ ω ω γ

σ γ

= +

= +

= +

=

= +

= += ⋅ + ⋅

= ⋅ + ⋅

= +

∗ ∗

( )

mod :

sin( )

sin( ).cos( ) cos( ).sin( )cos( ) sin( ) sin( ) cos( )

' sin( ) " cos( )

( ' " )

0

0

0 0

0

Storage and Loss modulustan ' ''

δ =GG

Page 32: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Dynamic moduli of a Maxwell fluid

w [rad/s]

0.01 0.1 1 10 100

Mod

uli [

Pa]

0.001

0.01

0.1

1

10

G'G"

G0

τG G

G G

'( )

"( )

ωω τω τ

ωωτ

ω τ

=+

=+

02 2

2 2

02 2

1

1

Page 33: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

G’ and G” for a generalized Maxwell fluid:

G G s s ds G e s ds

G

G G s s ds

G

iis

i

N

ii

ii

N

ii

ii

N

" ( ) cos( ) cos( )

( )

' ( ) sin( )

( )( )

= ⋅ =⎛⎝⎜

⎞⎠⎟

=+

= ⋅

=+

∞−

=

=

=

∫ ∑∫

ω ω ω τ ω

ωτωτ

ω ω

ωτωτ

0 10

21

0

2

21

1

1

Page 34: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

What have we gained in linear visco-elasticity? Newtonian behaviour real behaviour

1. Constant viscosity 1. Variable viscosity

2. No time effects 2. Time effects

3. No normal stresses in shear flow 3. Normal stresses

4. η(ext)/η(shear) = 3 4. Large η(ext)

3 dim: T = -pI + η (2D) G(t), H(τ),…Simple shear: σ = η dγ/dt fully descibes linear VE

Page 35: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Contents

1. Rheological phenomena

2. Constitutive equations2.1. Generalized Newtonian fluids2.2. Linear visco-elasticity2.3. Non-linear viscoelasticity

3. Rheometry

4. Parameters affecting rheology

Page 36: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

2. Constitutive equations2.3. Non-linear visco-elasticityExample 1: Steady state shear flow

22

21

γσσ

γσσ

γσ

η

&

&

&

zzyy

yyxx

xy

−=Ψ

−=Ψ

=

zzyy

yyxx

xy

N

N

σσ

σσ

σ

−=

−=

2

1

LDPE, Laun et al.PIB in decalin, Keentok et al.

Page 37: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Example 2: Non-linear stress relaxation upon step strain

LDPE, Laun et al.

Page 38: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Example 3: Stress evolution upon inception of shear or elongational flow

Page 39: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

What have we gained in non-linear visco-elasticity? Newtonian behaviour real behaviour

1. Constant viscosity 1. Variable viscosity

2. No time effects 2. Time effects

3. No normal stresses in shear flow 3. Normal stresses

4. η(ext)/η(shear) = 3 4. Large η(ext)

3 dim: T = -pI + η (2D) no universal model

Simple shear: σ = η dγ/dt

Page 40: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Contents

1. Rheological phenomena

2. Constitutive equations2.1. Generalized Newtonian fluids2.2. Linear visco-elasticity2.3. Non-linear viscoelasticity

3. Rheometry

4. Parameters affecting rheology

Page 41: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

3. Rheometry

Why ? 1. Input for Constitutive Equations2. Quality control3. Simulate industrial flows

A rheometer is an instrument that measures both stress and deformation.

indexerviscometer

What do we want to measure?- steady state data- small strain (LVE) functions- large strain deformations

Page 42: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Introduction: classifications

Kinematics : shear vs elongation

homogeneous vs non-homogeneous vs complex flow fields

type of straining:

- small : G’(ω), G”(ω), η+(t), η-(t), G(t), σy- large : G’(ω,γ), G”(ω,γ), η+(t,γ), η-(t ,γ), G(t ,γ), η(t,ε)- steady : η( ), Ψ1( )

shear rheometry : Drag or pressure driven flows.

&γ &γ

Page 43: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Shear flow geometries

Pressure driven flowsDrag flows

Sliding plates

Couette

Cone and Plate

Parallel plates

Capillary

Slit

Annulus

Macosko, 1992

Page 44: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Drag flows : Cone and plate

( )

( )

rr

r

r rvr

r r r

r r

rr

r

:

:sin

sin cot

: cot

1

1 0

1 2 0

2

2 2∂ σ

σ σρ

θθ

∂ σ θ

∂θ

σ

φ∂σ

∂θθ σ

θθ φφ θ

θθθ

θφθφ

−+

= −

− ⋅ =

+ ⋅ =

Probably most popular geometry Mooney (1934)

1. Steady, laminar, isothermal flow2. Negligible gravity and end effects3. Spherical boundary liquid4. vr=vz=0 and vφ(r,θ)5. Angle α < 0.1 radians

Equations of motion:

Page 45: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Drag flows : Cone and plate geometry

Boundary conditions1. vφ(π/2) = 02. vφ(π/2-α)=ωrsin(π/2-α)≈ωr

Shear stress

( )φ

σ

θφ σ σ

θ

σ φ

σπ

θφθφ θφ

θφ

π

θϕ

: cotsin

1 2 03

2

2

2

00

23

r

d

d rC Cte

M r drd

Mr

R

+ ⋅ = → = ≅

= ∫∫

⎪⎪⎪

⎪⎪⎪

=⋅

Independent of fluid characteristics because of small angle!

Page 46: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Drag flows : Cone and plate geometry

Shear rate: is also constant throughout the sample: homogeneous!

&( ) ( ) ( )

γω

αωα

ωα

= =⋅

⋅= ≅

vh r

rr tg tg

r

Normal stress differences: total trust on the plate is measured Fz

( )F R

N

z

FR

z

= −

=

πσ σθθ φφ

π

2

12

2

2

Page 47: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Drag flows : Cone and plate geometry

+ - constant shear rate, constant shear stress -homogeneous!- most useful properties can be measured- both for high and low viscosity fluids- small sample- easy to fill and clean

- - high visc: shear fracture - limits max. shear rate-(low visc : centrifugal effects/inertia - limits max. shear rate)- (settling can be a problem)- (solvent evaporation)- stiff transducer for normal stress measurements- viscous heating

Page 48: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Drag flows : Parallel plates

Again proposed by Mooney (1934)

1. Steady, laminar, isothermal flow2. Negligible gravity and end effects3. cylindrical edge4. vr=vz=0 and vφ(r,z)

Equations of motion:

( )

( )

( )

rr

rr r

vr

z

zz

rr

z

zz

:

:

:

1

0

0

2∂ σ

∂σ

ρ

θ∂ σ

∂ σ

θθ θ

θ

− = −

=

=

Page 49: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Drag flows : Parallel plates

Shear rate: is not constant throughout the sample

&γω

= =⋅v

hr

hr

Shear stressσ

π γ= +

⎣⎢

⎦⎥

MR

d Md R2

13lnln &

Normal stressesN N

FR

d Fzd

z

R1 2 2 2− = +

⎣⎢

⎦⎥

π γlnln &

Page 50: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Drag flows : Parallel plate geometry

+ - preferred geometry for viscous melts - small strain functions- sample preparation is much simpler- shear rate and strain can be changed also by changing h- determination of wall slip easy- N2 when N1 is known- edge fracture can be delayed

- - non-homogeneous flow field (correctable)- inertia/secondary flow - limits max. shear rate- edge fracture still limits use- (settling can be a problem)- (solvent evaporation)- viscous heating

Page 51: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Pressure driven flows : capillary rheometry

1. Steady, laminar, isothermal flow2. No slip at the wall, vx =0 at R=03. vr=vθ=04. Fluid is incompressible, η≠f(p)

Equation of motion:r

Z

θ

L

RQ

zr

rr

pz

rz: ( )1 0∂ σ∂

∂∂

− =

Only a function of rOnly a function of z

1r

d rdr

dpdz

rz( )σ=

Page 52: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

1

2

0 0

2

2

2

rd r

drP P

L

P PL

r Cr

C because r

RP P

LR

r rR

rz o L

rzo L

rz

rz wo L

rz w

( )

@

( )

( )

σ

σ

σ

σ σ

σ σ

=−

=−

⋅ +

= ≠ ∞ =

= =−

=Note : independent of fluid properties

Page 53: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

( )

Q v r rdr

Q v r r

r R and dr R d

Q r R R d

QR

d

zR

zR dv

drdr

R

w w

dvdr

drR

w

dvdr

w

w dvdr

z

z zw

zw

= ∫

= − ∫

= =

= − ∫ = −⎛⎝⎜

⎞⎠⎟∫

= − ∫

2

2 2

2 2

0

02

0

2

0

2

0

3

32

0

π

π π

σσ

σσ

π πσ

σσ

σ

σ

πσ σ

σ

σ

( )

3

34

34

43

2

3

3

32

3 3

QR R

dQd

QR

QR

d Qd

d Qd

w w

ww

dvdr

wdvdr w

wa

w

z

w

z

w

σ

π

σ

π σσ

γπ π σ

γγ

σ

σ

σ

+ ⋅ = −

= + ⋅

= +⎛⎝⎜

⎞⎠⎟

− =&ln

ln

&& ln

ln

Integration by parts + assume :no slip

substitute r and dr

Typical “trick” to deal with inhomogeneous flows:changing of variables

Shear rate calculation from Q

Differentiate with respect to σwusing Leibnitz’s rule

Page 54: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

r/R

0 1

v z / <

v z>

0

1

2

n=1n=0.7n=0.3n=0.01

γγ

σwa

w

d Qd

= +⎛⎝⎜

⎞⎠⎟

& lnln4

3Weissenberg-Rabinowitsch “Correction”

“Correction” factor accounts for material behaviour

Physical meaning:

e.g. power law fluid

Steepness of the velocity profile changesShear rate is increased with respect to the Newtonian case:

γγ

wa

n= +⎛

⎝⎜⎞⎠⎟

&

43 1

&γπ

aQR

=4

3

Page 55: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

What pressure drop do we really measure?

2R

LPP Lo

w ⋅−

=σCannot be measured!

z=0 z=LCapillairyReservoir

Exit

∆Pen

∆P ∆Ptot

∆Pex

Page 56: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

L/D

0 10 20 30 40 50 60

∆p

[MPa

]

0

10

20

30

40

50

10s-1 30s-1 50s-1 100s-1 200s-1 300s-1 500s-1

BAGLEY plots

L/De

Pressuredrop

γ3

γ1

γ2

∆Pe

LDPE @190°C

)eRL(2RP

w +⋅∆

=σ ∆pe can be used to estimatethe elongational viscosity (contraction flow)

Page 57: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Are these conditions met ? 1. Steady, laminar, isothermal flow2. No slip at the wall, vx =0 at R=03. vr=vθ=04. Fluid is incompressible, η≠f(p)

Problem 1: Melt distortion

Melt fracture typically occurs at σw 105 Pa

Page 58: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Are these conditions met ? 1. Steady, laminar, isothermal flow2. No slip at the wall, vx =0 at R=03. vr=vθ=04. Fluid is incompressible, η≠f(p)

Problem 2: Viscous heating

NaRk= ατ γ2

4

.

Page 59: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Are these conditions met ? 1. Steady, laminar, isothermal flow2. No slip at the wall, vx =0 at R=03. vr=vθ=04. Fluid is incompressible, η≠f(p)

Problem 3: Wall slip

cst@Rv4 s

a =σ+γ=γ &&

Page 60: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Are these conditions met ? 1. Steady, laminar, isothermal flow2. No slip at the wall, vx =0 at R=03. vr=vθ=04. Fluid is incompressible, η≠f(p)

Problem 4: Melt compressibility, η=f(p)

L/D

0 10 20 30 40 50 60

Pres

sure

dro

p(M

Pa)

0

10

20

30

40

50

60

70

80

10 s-1

30 s-1

50 s-1

100 s-1

200 s-1

300 s-1

500 s-1

1000 s-1

2000 s-1

Page 61: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Capillary rheometry : conclusions

+ - Simple yet accurate!- High shear rates possible- Sealed system, can be pressurized- Process simulator- Entrance flows and exit flows can be used- MFI

- - Non-homogeneous flow field (correctable)- Only viscosity data, some indications for N1, ηe- Lot of data required (Bagley plots)- Melt fracture limits shear rate- Wall slip can be a problem- Viscous heating- Shear history / degradation

Page 62: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Melt Flow index

Page 63: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Shear rheometers: the verdict

Couette + low η, high rates - end corrections+ can be homogeneous - high visc. : too difficult+ settling - no N1

Cone and Plate + best for N1 - edges, low shear rate+ homogeneous - free surface+ transient meas. - alignment

Parallel Plate + easy to load - edges+ G’,G” for melts - non-homogenous+ vary h! - free surface

Capillary + high rates - corrections:+ accuracte - non-homogenous+ sealed - no N1

Page 64: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Contents

1. Rheological phenomena

2. Constitutive equations2.1. Generalized Newtonian fluids2.2. Linear visco-elasticity2.3. Non-linear viscoelasticity

3. Rheometry

4. Parameters affecting rheology

Page 65: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

4. Parameters affecting rheology

• Chemistry• Molecular weight• Molecular weight distribution• Molecular architecture (branching) • Fillers/additives• Temperature• Pressure•…

Page 66: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

EEffect of molecular weight on the viscosity curve

Example: narrow MW polystyrenes

From Stratton

Page 67: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

4.3wM∝η

PS, 217°C

2.Mw,e=39000

wM∝η

Effect of the MW on the zero shear viscosity for linear molten polymers

Log η+ ct

Log Mw + ctBerry and Fox

Page 68: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Effect of molecular weight on moduli⎢

8900Mw =

581000Mw =

Onogi et al., 1970

Page 69: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Effects of molecular weight distribution

Viscosity:

Shear thinning sets in earlier with increasing molecular weight distribution

From Uy and Greassley

Page 70: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

EEffect of chain architecture (branching)Low shear rates higher shear rates

O = linear

and ∆ = branched

Kraus and Gruver

Page 71: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

EEffect of fillers

Chapman and Lee

Page 72: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

EEffect of temperature: time-temperature superposition

-C1 (T-Tr)

WLF-relation: log aT = ------------

C2 + T - Tr

Page 73: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Effect of pressure on viscosity

Relevant for injection moulding

Add-on ‘pressure chamber’ on Gottfert capillary rheometer

TdPd

⎟⎠⎞

⎜⎝⎛=

ηβ ln

Page 74: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

“Corrected” viscosity for PMMA (210° C)

Shear rate (s-1)

10 100

Visc

osity

(Pas

)

1e+3

1e+4

80 MPa70 MPa55 MPa40 MPa30 MPa0.1 MPa

Mean pressures:

Page 75: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Viscoity curves for PαMSAN and LDPE

Shear rate (s-1)

10 100

Visc

osity

(Pas

)

1e+3

1e+4

80 MPa70 MPa55 MPa40 MPa30 MPa0.1 MPa

Mean pressures:

PαMSAN

LDPE

Page 76: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Determination of β at several shear rates

Pmean (MPa)0 20 40 60 80 100 120

ln η

7

8

9

10

11

6 s-1

13 s-1

33 s-1

70 s-1

108 s-1

146 s-1

223 s-1

260 s-1

290 s-1

Shear rates:

TdPd

⎟⎠⎞

⎜⎝⎛=

ηβ ln

Page 77: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

β at several shear rates

Shear rate (s-1)

10 100 1000

β γ(GPa

-1)

2

4

6

8

10

12

14

16

18PMMAPαΜSANLDPEPMMAPαMSANLDPE

Page 78: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Determination of β at several shear stresses (PMMA)

Pmean (MPa)0 20 40 60 80 100 120

ln η

6

7

8

9

10

11

80 kPa100 kPa140 kPa206 kPa270 kPa363 kPa430 kPa500 kPa

Stresses:

TdPd

⎟⎠⎞

⎜⎝⎛=

ηβ ln

Page 79: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

β at several shear stresses (PMMA)

Shear stress (kPa)0 100 200 300 400 500 600

βσ(

GP

a-1)

5

10

15

20

25

30

35

40

45

PMMAPαMSANLDPE

Page 80: Rheology and Rheometry - PTG · Rheology and Rheometry Paula Moldenaers Department of Chemical Engineering Katholieke Universiteit Leuven W. De Croylaan 46, B-3001 Leuven Tel. 32(0)16

Useful references concerning rheology

Rheology: Principles, Measurements and Applications

C. Macosko Ed, VCH (1994)

Understanding Rheology

F. Morrison, Oxford University Press (2001)

Structure and Rheology of Molten Polymers

J.M. Dealy and R.G. Larson, Hanser (2006)