RGI / Effective Charges in Practise

23
Introductory Comments O(α 2 s ) Results from Shape Distributions O(α 2 s ) Results from Mean Values Summary RGI / Effective Charges in Practise Klaus Hamacher Fachbereich Mathematik & Naturwissenschaften Fachgruppe Physik Bergische Universität Wuppertal & DELPHI Collaboration Workshop on 1. Principles Non–Perturbative QCD of Hadron Jets Paris, 12 Janvier 2006 Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Transcript of RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

RGI / Effective Charges in Practise

Klaus Hamacher

Fachbereich Mathematik & NaturwissenschaftenFachgruppe Physik

Bergische Universität Wuppertal& DELPHI Collaboration

Workshop on 1. Principles Non–Perturbative QCDof Hadron Jets

Paris, 12 Janvier 2006

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Outline

1 Introductory CommentsPapersMass Effects & Corrections

2 O(α2s) Results from Shape Distributions

Effect of Changing the Renormalisation Scale

3 O(α2s) Results from Mean Values

Naive Power CorrectionRGIRGI vs. Power TermsMeasuring the β–Function

4 Summary

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

PapersMass Effects & Corrections

Talk is mainly based on:

DELPHI Collab., Consistent measurements of αs from preciseoriented event shape distributions ..., (Eur. Phys. J. C14, 557)

Standard event shapes (depending on polar angle)

DELPHI Collab., A study of the energy evolution of event shapedistributions and their means ..., (Eur. Phys. J. C29, 285)

Data

– radiative DELPHI Z events at ECM =45, 66 and 76 GeV

– DELPHI data from LEP1 and LEP2 (ECM =89 to 202 GeV)

– low energy data from various experiments

Observables

– usual event shape means:T , C, Major , BT , BW , (EEC, JCEF )

– M2h/s/E2

vis in alternative definitions “E/p-scheme”!

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

PapersMass Effects & Corrections

Mass Effects for Event Shapes / Means

Hadron masses influence shape observables.Two types of observables:

• e.g. Thrust : mass–dependence via E–conservation .

• e.g. Jet Masses: direct mass–dependence;avoid by choosing:

(p-scheme) (E-scheme)

(~p, E) −→ (~p,∣∣~p∣∣) (~p, E) −→ (pE , E)

Furthermore:

• Transverse momentum from B–decays .

Estimate effects using Monte Carlo models;b-correction: calculate b+udsc/udsc;

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

PapersMass Effects & Corrections

Mass Effects for Event Shape Means

Ms2/Evis

2

Mh2/Evis

2

Bsum

Bmax

1-Thrust

Major

C

correction to E-scheme

b mass correction

Cor

rect

ion

Fac

tor

ECM[GeV]

0.90.95

11.05

0.90.95

11.05

0.90.95

11.05

0.90.95

11.05

0.90.95

11.05

0.90.95

11.05

20 40 60 80 100 120 140 160 180 200

0.90.95

11.05

full linecorrection to E–schemedashed lineB–correction

=⇒ For Jet-masseschange to E-scheme

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

PapersMass Effects & Corrections

Mass Effects for Event Shapes

udsc

/uds

cb-1

Bmax

-0.04-0.03-0.02-0.01

00.010.020.030.04

0 0.05 0.1 0.15 0.2 0.25 0.3

udsc

/uds

cb-1

Bsum

-0.04-0.03-0.02-0.01

00.010.020.030.04

0 0.050.1 0.150.20.250.3 0.35

Correction slightly changes slope of distributions!

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Effect of Changing the Renormalisation Scale

Description of Event Shape Spectra

O(α2s)–prediction for events shape distributions

1σtot

df= Af · αs(µ) + (Af · (β0 log xµ − 2) + Bf ) αs(µ)2

• Change of xµ = µ/ECM“turns ” the prediction

• O(α2s) prediction for xµ = 1

in general inconsistent with data

→ αs results depend on fit range

→ Good χ2 only if xµ is optimised !

• Bad features are partly inheritedto the matched predictions.

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Effect of Changing the Renormalisation Scale

αs = αs(T ) – the Worst CaseO(α2

s) from Siggi Hahns thesis Matched

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Effect of Changing the Renormalisation Scale

Compare T , BT , C, MH , y , BW

1- T

Thrust

0.5M

H/E

Heavy

JetM

ass

0.4

0.4

0.6

0.6

0.81.0C

C-param

eter

BT

Tota

lJetB

roadening

0.0

0.00.0

0.00.0

0.2

0.20.2

0.20.2

0.3

0.3

0.30.3

BW

Wide

JetB

roadening

0.0010.01

0.10.1

0.1

0.10.1

0.50.5

0.50.5

0.50.5

0.60.6

0.60.6

0.60.6

0.70.7

0.70.7

0.70.7

0.80.8

0.80.8

0.80.8

0.90.9

0.90.9

0.90.9

1.01.0

1.01.0

1.01.0

2.02.0

2.02.0

2.02.0

y23

Durham

y23

data/fitOPAL (Matth. Ford´s Thesis) my eye fit note:B/A ratios

T , BT , C & 15MH , y small(er)BW negative

non-optimalscales =⇒

biases of αs

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Effect of Changing the Renormalisation Scale

αs Results - ln R Matched Theory

(from M.Fords thesis & LEPQCDWg info)

OPAL ADLO

PSfrag replacements

0.110

0.110

0.115

0.115

0.120

0.120

0.125

0.125

0.130

0.130

αS(MZ)

αS(MZ)

T

T

MH

MH

C

C

BT

BT

BW

BW

y23

y23

All

All

PSfrag replacements

0.110

0.110

0.115

0.115

0.120

0.120

0.125

0.125

0.130

0.130

αS(MZ)

αS(MZ)

T

T

MH

MH

C

C

BT

BT

BW

BW

y23

y23

All

All

Observe the expected pattern:T , BT , (C?) high ; MH , y central ; BW small

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Effect of Changing the Renormalisation Scale

O(α2s) & Experimental Optimisation

lg ( x )

0

20

40

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

0.11

0.12

0.13

0.14

0.151-T

EEC

CJCEF

O D

DELPHI

D2Geneva

D2Jade

D2Durham

xµ quadratic!0.1 0.12 0.14 αS (MZ

2)

EECAEECJCEF1-ThrOCBMaxBSum Hρ S DD2

E0

D2P0

D2P

D2Jade

D2Durham

D2Geneva

D2Cambridge

w. average

DELPHI xµ = 1

α S(MZ2 )

χ 2/ndf

0.1232(116)

71 / 17

0.1 0.12 0.14

xµ exp. opt.

6.2 / 17

0.1168(26)

ρ

ρ

Experimental optimisation strongly improves consistency!

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Effect of Changing the Renormalisation Scale

Experimental vs. ECH Scales

-5

-4

-3

-2

-1

0

1

2

-5 -4 -3 -2 -1 0 1 2

DELPHI

lg (xµECH)

lg (

x µEX

P)

EXP vs. ECHρ = 0.75 ± 0.11

T

Geneva

Bsum

ρD

JCEF

ρH

Durh.

ρs

Cam.

AEEC

D2p0JADE

D2E0

O

EECBmax

C

D2p

In plot xµ quadratic!

Experimental scalescorrelate ρ = 0.75with ECH or PMS scales

Errors:ECH: scale variation in fit rangeEXP: fit error

Influence of mass effectsnot considered !

10σ(P(lg(xECHµ /xEXP

µ ))) ∼ 2.5We “understand” the largerange of opt. scales in MS!

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Naive Power CorrectionRGIRGI vs. Power TermsMeasuring the β–Function

Naive Power Corrections

Assess power terms of means using:

〈f 〉 = 〈f 〉O(α2s)

+ 〈f 〉pow

〈fpow 〉 = C1/ECM

Find expected strongly differingpower terms.

Surprising:“Non–perturbative” p.t.’s correlatewith perturbative ratio B/A =⇒.

Power terms predominantly account for higher order pert. effects?

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Naive Power CorrectionRGIRGI vs. Power TermsMeasuring the β–Function

Renormalisation Group Invariant (RGI) P.T.

Demand observable R = 〈f 〉/A to fulfil RGE:

QdRdQ

= −bR2(1 + ρ1R + ρ2R2 + . . .) = bρ(R) .

b, ρi are scheme invariant . =⇒

b lnQΛR

=1R− ρ1 ln

(1 +

1ρ1R

)+

vanishes in second order︷ ︸︸ ︷∫ R

0dx

(1

ρ(x)+

1x2(1 + ρ1x)

)Simple RGI applies to observables depending on a single E scale.Numerically RGI=ECH.Exact conversion to MS.ΛR

ΛMS= eB/2Ab

(2c1

b

)−c1/bInclude power terms by:

ρ(x) → ρ(x)− K0

bx−c1/be−1/bx

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Naive Power CorrectionRGIRGI vs. Power TermsMeasuring the β–Function

RGI – Description of Shape Observable Means

arbi

trar

y sc

ale

√s–[GeV]

DELPHI

TOPAZAMYMKIIHRSPLUTOTASSOL3JADEDELPHI

<C-Parameter>

<1-Thrust>

<Major>

0.9

1

2

3

4

5

6

7

8

102

arbi

trar

y sc

ale

√s–[GeV]

JADEL3DELPHI

<Bmax>

<Bsum>

<Mh2/Evis

2 E def.>

<Ms2/Evis

2 E def.>

0.9

1

2

3

4

5

6

7

8

102

full lineRGI

dashedMSsame Λ

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Naive Power CorrectionRGIRGI vs. Power TermsMeasuring the β–Function

RGI – for 〈y〉

αs comes out somewhat lower ! ⇒ String effect?

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Naive Power CorrectionRGIRGI vs. Power TermsMeasuring the β–Function

RGI & Means Need no Significant Power Terms

Fitting RGI with power–terms to manyobservable means yields:

K0 compatible with 0 ⇔ No P.C.!

Virtue of both:RGI and inclusiveness of mean values.

Presence of genuinepower terms for means unclear !

Possible contribution:O(∼ 2%) (rel.) at the Z.

K0

1-Thrust

Major

C-Parameter

Mh2/Evis

2 E def.

Ms2/Evis

2 E def.

Bsum

Bmax

EEC 30o-150o

JCEF 110o-160o

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Naive Power CorrectionRGIRGI vs. Power TermsMeasuring the β–Function

Cmp. αs from Means Obtained with Various Methods

RGI yields smallest scatter; 〈αs(MZ )〉 = 0.121± 0.002

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Naive Power CorrectionRGIRGI vs. Power TermsMeasuring the β–Function

“Predict” Power Terms using RGI

Set RGI and Power Modelpredictions equal:

〈R〉RGI · A=〈f 〉pert + 〈f 〉pow

Solve for α0.

“Predicted” α0 follows trend of the data.

Agrees better than any presumeduniversal value ∼ 0.5.

α00 0.2 0.4 0.6 0.8 1

C-Parameter

1-Thrust

Mh2/Evis

2 E def.

Ms2/Evis

2 E def.

Bsum

Bmax

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Naive Power CorrectionRGIRGI vs. Power TermsMeasuring the β–Function

Measurement of the β–Function

RGI bases on the RGE ,β–function can be measured without prior αs determination!

∂R−1

∂ ln Q2 = βR =β0

(1 +

β1

2πβ0R + ρ2R2 + . . .

)=⇒ measure βR ≈ β directly from a mean event shape.Measurement is valid even “outside” QCD.

Got consistent results from several observables,now use 〈1− T 〉 (most data).

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Naive Power CorrectionRGIRGI vs. Power TermsMeasuring the β–Function

Measurement of the β–Function

Using DELPHI and low energy data:

∂R−1

∂ ln Q= 1.38± 0.05

Uncertainty due to power terms small!

β0 = 7.86± 0.32 nf = 4.75± 0.44

Compare “cross checks” via αs:

LEP evt. shapes & world dataRτ , F2, · · ·

β0 = 7.67± 1.63 β0 = 7.76± 0.44

6

8

10

12

14

16

18

20

22

8 910 20 30 40 50 60 80 100 200Ecm (GeV)

β0 QCD

QCD+Gluinos

β0 fit

DELPHIL3AMYTOPAZJADETASSOPEP5PLUTOHRS

DELPHI

1/ <

1−T

>

light gluinos excluded

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Summary

• O(α2s) predictions with PMS/ECH scales

better describe event shape distributions than MS!χ2/ndf of αs average from 18 observabes:

MS :7117

ECH :1917

exp. opt. :6.217

• Inadequate MS scales bias matched results !

• RGI can describe E dependence of means without power terms.⇒ Leads to a direct measurement of the β–function ...

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise

Introductory CommentsO(α2

s ) Results from Shape DistributionsO(α2

s ) Results from Mean ValuesSummary

Summary

RGI measurement of theβ–functionnicely confirmsthe QCD gauge group!

Klaus Hamacher, Bergische Universität Wuppertal RGI / Effective Charges in Practise