Retaining Wall Design

168
INPUT DATAS INPUT GRADE OF CONCRETE fck 25 N/mm2 INPUT GRADE OF STEEL f y 415 N/mm2 INPUT ANGLE OF REPOSE OF SOIL θ 30 DEG INPUT BULK DENSITY OF SOIL Ws 18 KN/m3 INPUT SOIL SAFE BEARING CAPACITY SBC 150 KN/m2 INPUT ANGLE OF SURCHARGE OF FILL C 10 DEG INPUT COEFFT OF FRICTION μ 0.45 COS C 0.985 COS θ 0.866 COEFFT OF ACTIVE PRESSURE Ka 0.350 0.334 COEFFT OF PASSIVE PRESSURE Kp 2.859 INPUT HEIGHT OF FILLING H 3.00 mtr MIN DEPTH OF FDN h 0.93 mtr INPUT PROVIDE DEPTH OF FDN D h/4= 0.75 1.20 mtr 1.20 TOTAL HT OF WALL Ht=H+D 4.20 mtr CONST α 0.098 Toe Length TL 0.75 mtr 0.75 Heel Length HL 2.60 mtr CALCULATED BASE WIDTH B(MIN) Bm 2.23 mtr INPUT PROVIDE BASE WIDTH B B 3.75 mtr 3.75 INPUT SURCHARGE ps ps 2.00 KN/m BASE SLAB THICK D(MIN) 350 280 mm 210 INPUT PROVIDE BASE SLAB THICK D 280 mm 0 WALL THICK AT BOTTOM T(MIN) 420 350 mm 280 INPUT PROVIDE WALL THICK AT BOTTOM T1 400 mm 400 INPUT PROVIDE WALL THICK AT TOP T2 200 mm 0 CHECK FOR BEARING PRESSURE WT OF BASE SLAB/FOOTING W1 26.25 KN/m WT OF STEM/ WALL RECTANGLE PART W2 19.60 KN/m WT OF STEM/ WALL TRIANGLE PART W3 9.80 KN/m WT OF REAR SOIL OVER HEEL W4 184.19 KN/m WT/ AXIAL LOAD FROM COLUMN W5 0.00 KN/m TOTAL STABILISING VERTICAL FORCE W 239.84 KN/m HORIZONTAL EARTH PRESSURE Ph 48.37 KN/m HORIZONTAL SURCHARGE Ps 15.37 KN/m TOTAL HORIZONTAL PRESSURE V 63.73 KN/m DISTANCE OF W1 FROM TOE FRONT TIP X1 X1 1.88 mtr DISTANCE OF W2 FROM TOE FRONT TIP X2 0.85 mtr DISTANCE OF W3 FROM TOE FRONT TIP X3 0.63 mtr DISTANCE OF W3 FROM TOE FRONT TIP X4 2.66 mtr DISTANCE OF W3 FROM TOE FRONT TIP X5 0.85 mtr HT OF HORT FORCE Y1 FROM TOE TOP Y1 1.31 mtr (WHERE WATER TABLE IS BELOW BASE OF FOO (Ex 15.1 RCC by BC Punmia & Ex 12.1 Vazrani and RCC RETAINING WALL(CANTILEVERTYPE) MAX 6.0 MTR HEIGHT INCL COLU

description

retain

Transcript of Retaining Wall Design

Page 1: Retaining Wall Design

INPUT DATAS

INPUT GRADE OF CONCRETE fck 25 N/mm2

INPUT GRADE OF STEEL f y 415 N/mm2

INPUT ANGLE OF REPOSE OF SOIL θ 30 DEG

INPUT BULK DENSITY OF SOIL Ws 18 KN/m3

INPUT SOIL SAFE BEARING CAPACITY SBC 150 KN/m2

INPUT ANGLE OF SURCHARGE OF FILL C 10 DEG

INPUT COEFFT OF FRICTION µ 0.45

COS C 0.985

COS θ 0.866

COEFFT OF ACTIVE PRESSURE Ka 0.350 0.334

COEFFT OF PASSIVE PRESSURE Kp 2.859

INPUT HEIGHT OF FILLING H 3.00 mtr

MIN DEPTH OF FDN h 0.93 mtr

INPUT PROVIDE DEPTH OF FDN D h/4= 0.75 1.20 mtr 1.20

TOTAL HT OF WALL Ht=H+D 4.20 mtr

CONST α 0.098

Toe Length TL 0.75 mtr 0.75

Heel Length HL 2.60 mtr

CALCULATED BASE WIDTH B(MIN) Bm 2.23 mtr

INPUT PROVIDE BASE WIDTH B B 3.75 mtr 3.75

INPUT SURCHARGE ps ps 2.00 KN/m

BASE SLAB THICK D(MIN) 350 280 mm 210

INPUT PROVIDE BASE SLAB THICK D 280 mm 0

WALL THICK AT BOTTOM T(MIN) 420 350 mm 280

INPUT PROVIDE WALL THICK AT BOTTOM T1 400 mm 400

INPUT PROVIDE WALL THICK AT TOP T2 200 mm 0

CHECK FOR BEARING PRESSURE

WT OF BASE SLAB/FOOTING W1 26.25 KN/m

WT OF STEM/ WALL RECTANGLE PART W2 19.60 KN/m

WT OF STEM/ WALL TRIANGLE PART W3 9.80 KN/m

WT OF REAR SOIL OVER HEEL W4 184.19 KN/m

WT/ AXIAL LOAD FROM COLUMN W5 0.00 KN/m

TOTAL STABILISING VERTICAL FORCE W 239.84 KN/m

HORIZONTAL EARTH PRESSURE Ph 48.37 KN/m

HORIZONTAL SURCHARGE Ps 15.37 KN/m

TOTAL HORIZONTAL PRESSURE V 63.73 KN/m

DISTANCE OF W1 FROM TOE FRONT TIP X1 X1 1.88 mtr

DISTANCE OF W2 FROM TOE FRONT TIP X2 0.85 mtr

DISTANCE OF W3 FROM TOE FRONT TIP X3 0.63 mtr

DISTANCE OF W3 FROM TOE FRONT TIP X4 2.66 mtr

DISTANCE OF W3 FROM TOE FRONT TIP X5 0.85 mtr

HT OF HORT FORCE Y1 FROM TOE TOP Y1 1.31 mtr

(WHERE WATER TABLE IS BELOW BASE OF FOOTING)

(Ex 15.1 RCC by BC Punmia & Ex 12.1 Vazrani and Ratwani)

RCC RETAINING WALL(CANTILEVERTYPE) MAX 6.0 MTR HEIGHT INCL COLUMN LOAD IN LINE

Page 2: Retaining Wall Design

HT OF SUR FORCE Y2 FROM TOE TOP Y2 1.96 mtr

DIST OF ΣVERT REACTION FROM TOE FRONT TIP 2.34 mtr

CALCULATION OF PRESSURE

REACTION OF FORCES 248.17 KN

DIST OF REACTION FROM TOE X 1.89 m

ECCENTRICITY e FROM CETRE OF BASE SLAB 0.01 m

PRESSURE AT TOE TIP Pmax 0 65.29 KN/m2 150

PRESSURE AT HEEL TIP Pmax 0 62.62 KN/m2 150

PRESSURE AT TOE FACE OF VER STEM 64.76 KN/m2

PRESSURE AT HEEL FACE OF VER STEM 64.47 KN/m2

FOS AGAINST OVERTURNING 6.34

FOS AGAINST SLIDING 1.69

DESIGN OF SHEAR KEY

INPUT PERMISSIBLE SHEAR STRESS Tc 0.33 N/mm2

THICKNESS OFKEY 0 mm 0

DEPTH OF KEY 0.00 m

KEY REINFORCEMENT 0 mm2

INPUT PROVIDE DIA OF STEEL BAR 10 mm

SPACING OF BARS 0 mm

DESIGN OF BASE SLAB

DESIGN OF TOE SLAB

EFFECTIVE DEPTH OF TOE d 205 mm

SPAN OF TOE L1 0.75 m

WT OF FOOTING W4 7.00 KN/m

MAX BM AT BASE OF TOE Mt 24.48 KN-m

SHEAR FORCE Vmax 47.44 KN

DESIGN OF TOE SLAB TO RESIST BENDING MOMENT

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 1.0 Mtr

Max BM Mx 24.48 KN-M

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 84 mm 195

RESULT Adopt Effective Depth d 200 mm

INPUT Use Dia of Slab rft 10 mm

Adopt Cover for Slab 75 mm

Over all Depth of Base Slab D 280 mm

Width of Slab considered for Cal 1000 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 0.61

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

0.61 0.175 350 Sqmm

Min area of Tension Steel Ao=0.85*bd/fy 410 Sqmm

OR INCREASE WIDTH OF FDN

Page 3: Retaining Wall Design

Min Area of Steel 0.15 % (Temp Rft) 420 Sqmm

Max area of Tensile Steel = 0.04 bD 11200 Sqmm

Provide Area of Tension Steel 420 Sqmm

Area of One Bar 78.57 Sqmm 10

RESULT Spacing of Main Bars 180 mm 10

Min Area of Steel 0.12 % 336 Sqmm

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

420 Sqmm

INPUT Use 10 mm Dia bars as distribution Rft

Area of One Bar 78.57 Sqmm 10

RESULT Spacing of Distribution Bars 180 mm 10

DESIGN/ CHECK FOR TOE SLAB TO RESIST SHEAR

Grade of Concrete M 25

Effective Depth 200 mm

Over allDepth of Slab 280 mm

Dia of Shear rft 10 mm

Area of One Bar 78.57 Sqmm

Spacing of Bars 180 mm

Max Shear Force wL/2 47.44 KN

Percentage of Tensile Steel 100At/2bd = 0.22 %

(at the end, alternate bar are bent up)

Design Shear Strength 0.344 N/ Sqmm

Calculated k Value

INPUT For 280 mm thick slab, k=

Permissible Max Shear Stress 0.344 N/ Sqmm

Nominal Shear stress Vu/bd 0.24 N/ Sqmm

Shear Check Safe

DESIGN OF HEELSLAB

SPAN OF HEEL L2 2.60 M

PRESSURE AT HEEL Wp 63.55 KN/m2

WT OF SOIL OVER HEEL W5 70.56 KN/m

WT OF HEEL W6 7.00 KN/m

MAX BM AT HEEL Mh 47.36 KN-m

SHEAR FORCE Vmax 50.44 KN

Page 4: Retaining Wall Design

DESIGN OF HEEL SLAB TO RESIST BENDING MOMENT

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 1.0 Mtr

Max BM Mx 47.36 KN-M

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 117 mm 195

RESULT Adopt Effective Depth d 200 mm

INPUT Use Dia of Slab rft 12 mm

Adopt Cover for Slab 75 mm

Over all Depth of Base Slab D 280 mm

Width of Slab considered for Cal 1000 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 1.18

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

1.18 0.348 697 Sqmm

Min area of Tension Steel Ao=0.85*bd/fy 410 Sqmm

Min Area of Steel 0.15 % (Temp Rft) 420 Sqmm

Max area of Tensile Steel = 0.04 bD 11200 Sqmm

Provide Area of Tension Steel 697 Sqmm

Area of One Bar 113.14 Sqmm 12

RESULT Spacing of Main Bars 160 mm 12

Min Area of Steel 0.12 % 336 Sqmm

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

420 Sqmm

INPUT Use 12 mm Dia bars as distribution Rft

Area of One Bar 113.14 Sqmm 12

RESULT Spacing of Distribution Bars 260 mm 12

DESIGN/ CHECK FOR HEEL SLAB TO RESIST SHEAR

Grade of Concrete M 25

Effective Depth 200 mm

Over allDepth of Slab 280 mm

Dia of Shear rft 12 mm

Area of One Bar 113.14 Sqmm

Page 5: Retaining Wall Design

Spacing of Bars 160 mm

Max Shear Force wL/2 50.44 KN

Percentage of Tensile Steel 100At/2bd = 0.35 %

(at the end, alternate bar are bent up)

Design Shear Strength 0.423 N/ Sqmm

Calculated k Value

INPUT For 280 mm thick slab, k=

Permissible Max Shear Stress 0.423 N/ Sqmm

Nominal Shear stress Vu/bd 0.25 N/ Sqmm

Shear Check Safe

DESIGN OF STEM WALL

SPAN OF WALL L3 3.80 M

MAX BM AT BOTTOM OF WALL Mw 116.46 KN-m

SHEAR FORCE Vmax 63.73 KN

DESIGN OF STEM WALL TO RESIST BENDING MOMENT

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 1.0 Mtr

Max BM Mx 116.46 KN-M

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 184 mm 313

RESULT Adopt Effective Depth d 320 mm

INPUT Use Dia of Stem Wall rft 12 mm

Adopt Cover for Stem wall 75 mm

Over all Depth of Base Slab D 400 mm

Width of Slab considered for Cal 1000 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 1.14

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

1.14 0.333 1068 Sqmm

Min area of Tension Steel Ao=0.85*bd/fy 655 Sqmm

Min Area of Steel 0.15 % (Temp Rft) 600 Sqmm

Max area of Tensile Steel = 0.04 bD 16000 Sqmm

Provide Area of Tension Steel 1068 Sqmm

Area of One Bar 113.14 Sqmm 12

RESULT Spacing of Main Bars 100 mm 12

Page 6: Retaining Wall Design

Min Area of Steel 0.12 % 480 Sqmm

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

600 Sqmm

INPUT Use 12 mm Dia bars as distribution Rft

Area of One Bar 113.14 Sqmm 12

RESULT Spacing of Distribution Bars 180 mm 12

CURTAILMENT REINFORCEMENT

DEPTH FROM TOP OF EMBANKMENT 2.1 Mtr

AREA OF REINFORCEMENT 534 Sqmm

Use Dia of Stem Wall rft 12 mm 20

Area of One Bar 113.14 Sqmm

Spacing of Distribution Bars 200 mm 12

DISTRIBUTION STEEL

DEPTH FROM TOP OF EMBANKMENT 2.1 Mtr

AREA OF REINFORCEMENT 600 Sqmm

Use Dia of Stem Wall rft 12 mm 16

Area of One Bar 113.14 Sqmm

Spacing of Distribution Bars 180 mm 12

DESIGN/ CHECK FOR STEM WALL TO RESIST SHEAR

Grade of Concrete M 25

Effective Depth 320 mm

Over allDepth of Slab 400 mm

Dia of Shear rft 12 mm

Area of One Bar 113.14 Sqmm

Spacing of Bars 100 mm

Max Shear Force wL/2 63.73 KN

Percentage of Tensile Steel 100At/2bd = 0.35 %

(at the end, alternate bar are bent up)

Design Shear Strength 0.423 N/ Sqmm

Calculated k Value

INPUT For 400 mm thick slab, k=

Permissible Max Shear Stress 0.423 N/ Sqmm

Nominal Shear stress Vu/bd 0.20 N/ Sqmm

Shear Check Safe

Page 7: Retaining Wall Design
Page 8: Retaining Wall Design

Soil Ws KN/Sqm θ Rg θ Mean µ β Fr bet soil & wall

Sand 17-20 25-35 30 0.55 29

Medium Clay 16-18 14-28 21 0.4 22

Soft Clay 15-17 4-16 10 0.33 18

Ka= Cos C((Cos C- Sqrt(Cos C^2-Cos θ^2))/(Cos C+ Sqrt(Cos C^2-Cos θ^2))) = ((1-SIN(θ))/(1+SIN(θ))^2

1/ka

h=SBC/Ws*(1-sin θ /1+sin θ )^2

DEPTH=H/4 AND NOT LESS THAN MIN DEPTH/ 1.00Mtr DEPTH OF FDN

Ht=H+DEPTH

α= 1- q0/(2γH) α=TOE WIDTH/BASE WIDTH

αBm

B- αBm-T1

H*(Sqrt((1-sino/1+sino)/(1-k * (3*k+1)))*H Vaz Rat Page 437

GENERALLY B=Ht/3 AND NOT LESS THAN B(MIN)

GIVE VALUE=0 IF THERE IS NO SURCHARGE

D=Ht/12 to Ht/20

BASE SLAB THICKNESS

T=Ht/10 to H/15 H=

WALL THICKNESS AT BOT 3000

Th at Top T2 = T1/2 WALL THICKNESS AT TOP

W1=B*D*25

W2=(T1)*(H-D)*25

W3=(T2-T1)/2*(H-D)*25

W4=ALPHA*B*(Ht-D)*Ws+Ps*ALPHA* EXIST. GL

AXIAL LOAD FROM COLUMN IN LINE WITH RETAING WALL

W=W1+W2+W3+W4

P1=Ka*Ws*Ht*Ht/2

Ps=ps*Ht NAME FORCE LVR ARM MOM @ Toe h=

W1 26.25 1.88 49.22

X1=B/2 W2 19.60 0.85 16.66

ALPHA*B+T1/2 W3 9.80 0.63 6.22

ALPHA*B+T1+(T2-T1)/3 W4 184.19 2.66 489.76 1200

X3=B-ALPHA*B/2 W5 0.00 0.85 0.00 D=

W 239.84 2.34 561.86 280

Y1=Ht/3 Ph 48.37 1.31 63.20

(WHERE WATER TABLE IS BELOW BASE OF FOOTING)

(Ex 15.1 RCC by BC Punmia & Ex 12.1 Vazrani and Ratwani)

RCC RETAINING WALL(CANTILEVERTYPE) MAX 6.0 MTR HEIGHT INCL COLUMN LOAD IN LINE

Page 9: Retaining Wall Design

Y2=Ht/2 Pv 15.37 1.96 30.12

W1*X1+W2*X2+W3*X3/(V ) V 63.73 1.46 93.32 10 # @

R 248.17 1.89 468.54 180 mm c/c

R=V*V+H*H

X=(W1*X1+W2*X2+W3*X3+Ph*Y1+Ps*Y2)/R 10 # @

e=X-B/2 (- SIGN FOR RESULTANT FORCE AWAY TO HEAL SIDE OF STEM SLAB)CHECK Pmax < SBC 180 mm c/c

Pmax=W/B(1+6*e/B) CHECK Pmin>O (TO RESIST VERTICAL UP PR)

Pmin=W/B(1-6*e/B)

CHECK FOS>1.5

CHECK FOS>1.5

FOS=(W1*X1+W2*X2+W3*X3)/(P*Y1+Ps*Y2)

FOS=u*W/(Ph+Ps)

ALL DIMENSIONS ARE IN MILLIMETRES

FROM IS 456 TABLE FOR M25= 0.29/MM2 FOR M30=0.29N/MM2

THICKNESS OF KEY=(P+Ps)*1.5/Tc SHEAR KEY THICK

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

d=D-COVER 100 As/bd β SS N/Sqmm

L1=B-B2-T 0.20 14.51 0.331

W4=D*25

Mt=(W4+Pmax)*L1*L1/2

V=(Pmax*(L1-d))*1.5

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d H=

415 0.48 d 3.00

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949 EXIST. GL

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547 h=

1.20

Steel

TOE

750

0.75

Page 10: Retaining Wall Design

D=

0.28

mm Dia

SBC 65.29

mm Dia 150

mm Dia bars as distribution Rft

mm Dia

mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

0.22 13.30 0.344

N/ Sqmm

1.00 Value of K

1.00 Ds >300 275 250 225 200 175 <151

k 1.00 1.05 1.10 1.15 1.20 1.25 1.30

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

HL

Wp=(P2+P4)/2

W5=Ws*(Ht-D)

W6=25*D

Mh=Wp+W5+W6)*L2*L2

V=(Pheel*(L2-d))*1.5

3.75

Page 11: Retaining Wall Design

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

mm Dia

mm Dia

mm Dia bars as distribution Rft

mm Dia

mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Steel

Page 12: Retaining Wall Design

Design Shear Strength

100 As bd β SS N/Sqmm

0.35 8.21 0.423

N/ Sqmm

1.00 Value of K

1.00 Ds >300 275 250 225 200 175 <151

k 1.00 1.05 1.10 1.15 1.20 1.25 1.30

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

L3=Ht-D

Mw=Ph* Ht/3+Ps*Ht/2L3*L3+PsL3*L3/2

V=(Pheel*(L2-d))*1.5

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

mm Dia

mm Dia

Steel

Page 13: Retaining Wall Design

mm Dia bars as distribution Rft

mm Dia

mm Dia

mm Dia

mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

0.35 8.21 0.423

N/ Sqmm

1.00 Value of K

1.00 Ds >300 275 250 225 200 175 <151

k 1.00 1.05 1.10 1.15 1.20 1.25 1.30

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

Page 14: Retaining Wall Design
Page 15: Retaining Wall Design

2 KN/M SURCHARGE

MADE UP GLMADE UP GL

t= 200

ANGLE OF SURCHARGE C

12 # @

200 mm c/c

EARTH FILLING SIDE

12 # @

180 mm c/c

12 # @

100 mm c/c

12 # @

1960 100 mm c/c

12 # @

180 mm c/c

12 # @

160 mm c/c

(TO RESIST VERTICAL DOWN PRESSURE)

528

Page 16: Retaining Wall Design

12 # @

0.00 260 mm c/c

10 # @

0 mm c/c

0

(TO RESIST VERTICAL UP PR)

T=

400

B= 3750

ALL DIMENSIONS ARE IN MILLIMETRES

2 KN/M SURCHARGE

MADE UP GLMADE UP GL

W5

0.00

t= 0.20

ANGLE OF SURCHARGE C

EARTH FILLING SIDE

Ps

15.37

Ph

48.37

W2

19.60

W3 W4

9.80 184.19

R

0.01

0.40

2600

TOE

750

HEEL

0.75 2.60

Page 17: Retaining Wall Design

W1

26.25

64.76 64.47 62.62

3.75

Page 18: Retaining Wall Design
Page 19: Retaining Wall Design
Page 20: Retaining Wall Design
Page 21: Retaining Wall Design
Page 22: Retaining Wall Design

(Ex 14.1 Dhayaratnam& Ex 19.3 AK Jain)

INPUT DATAS

INPUT GRADE OF CONCRETE fck 25 N/mm2

INPUT GRADE OF STEEL f y 415 N/mm2

INPUT ANGLE OF REPOSE OF SOIL θ 35 DEG

INPUT BULK DENSITY OF SOIL Ws 17 KN/m2

INPUT SOIL SAFE BEARING CAPACITY SBC 200 KN/m2

INPUT ANGLE OF SURCHARGE OF FILL C 0 DEG

INPUT COEFFT OF FRICTION µ 0.45

COS C 1

COS θ 0.819

COEFFT OF ACTIVE PRESSURE Ka 0.271

COEFFT OF PASSIVE PRESSURE Kp 3.687

INPUT HEIGHT OF FILLING H 3 mtr

MIN DEPTH OF FDN h 0.87 mtr

INPUT PROVIDE DEPTH OF FDN D h/4= 0.75 1.80 mtr 1.80

TOTAL HT OF WALL Ht=H+D 4.80 mtr

CONST α(Select FACTOR αb from the range ) = 0.740 0.740 0.851

CALCULATED BASE WIDTH B(MIN) 2.00 mtr

INPUT PROVIDE BASE WIDTH B 4.60 mtr 4.60

INPUT SURCHARGE ps 0 KN/m

BASE SLAB THICK D(MIN) 320 mm

INPUT PROVIDE BASE SLAB THICK D 320 mm 0

WALL THICK AT BOTTOM T(MIN) 400 mm

INPUT PROVIDE WALL THICK AT BOTTOM T1 400 mm 0

INPUT PROVIDE WALL THICK AT TOP T2 200 mm 0

CHECK FOR BEARING PRESSURE

WT OF BASE SLAB/FOOTING W1 36.80 KN/m

WT OF STEM/ WALL W2 33.60 KN/m

WT OF REAR SOIL OVER HEEL W3 259.18 KN/m

TOTAL STABILISING VERTICAL FORCE V 329.58 KN/m

HORIZONTAL EARTH PRESSURE Ph 46.27 KN/m

HORIZONTAL SURCHARGE Ps 0.00 KN/m

TOTAL HORIZONTAL PRESSURE 46.27 KN/m

DISTANCE OF W1 FROM TOE FRONT TIP X1 2.30 mtr

DISTANCE OF W2 FROM TOE FRONT TIP X2 1.00 mtr

DISTANCE OF W3 FROM TOE FRONT TIP X3 2.90 mtr

HT OF HORT FORCE Y1 FROM TOE TOP 1.49 mtr

HT OF SUR FORCE Y2 FROM TOE TOP 2.24 mtr

DIST OF ΣVERT REACTION FROM TOE FRONT TIP 2.64 mtr

RCC RETAINING WALL(CANTILEVERTYPE) MAX 6.0 MTR HEIGHT AND CLOLUMNS IN LINE

(WHERE WATER TABLE IS BELOW BASE OF FOOTING)

Page 23: Retaining Wall Design

CALCULATION OF PRESSURE

REACTION OF FORCES 332.82 KN

DIST OF REACTION FROM TOE X 2.40 m

ECCENTRICITY e 0.10 m

PRESSURE AT TOE TIP Pmax 81.42 KN/m2

PRESSURE AT HEEL TIP Pmax 61.88 KN/m2

PRESSURE AT TOE FACE OF VER STEM 78.03 KN/m2

FOS AGAINST OVERTURNING 12.58

FOS AGAINST SLIDING 3.21

IF FOS<1.5 PROVIDE SHEAR KEY

OR INCREASE WIDTH OF FDN

DESIGN OF SHEAR KEY

INPUT PERMISSIBLE SHEAR STRESS Tc 0.33 N/mm2

THICKNESS OFKEY 1000 mm 1000

DEPTH OF KEY 0.00 m

KEY REINFORCEMENT 1200 mm2

INPUT PROVIDE DIA OF STEEL BAR 16 mm

SPACING OF BARS 160 mm

DESIGN OF BASE SLAB

DESIGN OF TOE SLAB

EFFECTIVE DEPTH OF TOE d 245 mm

SPAN OF TOE L1 0.80 m

WT OF FOOTING W4 8.00 KN/m

MAX BM AT BASE OF TOE Mt 34.16 KN-m

SHEAR FORCE Vmax 59.37 KN

DESIGN OF TOE SLAB TO RESIST BENDING MOMENT

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 1.0 Mtr

Max BM Mx 34.16 KN-M

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 100 mm 232

RESULT Adopt Effective Depth d 240 mm

INPUT Use Dia of Slab rft 16 mm

Adopt Cover for Slab 75 mm

Over all Depth of Base Slab D 325 mm

Width of Slab considered for Cal 1000 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 0.59

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

0.59 0.169 406 Sqmm

Min area of Tension Steel Ao=0.85*bd/fy 491.57 Sqmm

Max area of Tensile Steel = 0.04 bD 13000 Sqmm

Page 24: Retaining Wall Design

Provide Area of Tension Steel 492 Sqmm

Area of One Bar 201.14 Sqmm 16

RESULT Spacing of Main Bars 400 mm 16

Min Area of Steel 0.12 % 390 Sqmm

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

487.5 Sqmm

INPUT Use 16 mm Dia bars as distribution Rft

Area of One Bar 201.14 Sqmm 16

RESULT Spacing of Distribution Bars 410 mm 16

DESIGN/ CHECK FOR TOE SLAB TO RESIST SHEAR

Grade of Concrete M 25

Effective Depth 240 mm

Over allDepth of Slab 325 mm

Dia of Shear rft 16 mm

Area of One Bar 201.14 Sqmm

Spacing of Bars 400 mm

Max Shear Force wL/2 59.37 KN

Percentage of Tensile Steel 100At/2bd = 0.21 %

(at the end, alternate bar are bent up)

Design Shear Strength 0.338 N/ Sqmm

Calculated k Value

INPUT For 325 mm thick slab, k=

Permissible Max Shear Stress 0.338 N/ Sqmm

Nominal Shear stress Vu/bd 0.25 N/ Sqmm

Shear Check Safe

DESIGN OF HEELSLAB

SPAN OF HEEL L2 3.40 M

PRESSURE AT HEEL Wp 76 KN/m2

WT OF SOIL OVER HEEL W5 76 KN/m

WT OF HEEL W6 8 KN/m

MAX BM AT HEEL Mh 266 KN-m

SHEAR FORCE Vmax 218.22 KN

DESIGN OF HEEL SLAB TO RESIST BENDING MOMENT

Page 25: Retaining Wall Design

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 1.0 Mtr

Max BM Mx 266.33 KN-M

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 278 mm 232

RESULT Adopt Effective Depth d 280 mm

INPUT Use Dia of Slab rft 16 mm

Adopt Cover for Slab 75 mm

Over all Depth of Base Slab D 365 mm

Width of Slab considered for Cal 1000 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 3.40

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

3.40 1.167 3268 Sqmm

Min area of Tension Steel Ao=0.85*bd/fy 573.49 Sqmm

Max area of Tensile Steel = 0.04 bD 14600 Sqmm

Provide Area of Tension Steel 3268 Sqmm

Area of One Bar 201.14 Sqmm 16

RESULT Spacing of Main Bars 60 mm 16

Min Area of Steel 0.12 % 438 Sqmm

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

547.5 Sqmm

INPUT Use 16 mm Dia bars as distribution Rft

Area of One Bar 201.14 Sqmm 16

RESULT Spacing of Distribution Bars 360 mm 16

DESIGN/ CHECK FOR HEEL SLAB TO RESIST SHEAR

Grade of Concrete M 25

Effective Depth 280 mm

Over allDepth of Slab 365 mm

Dia of Shear rft 16 mm

Area of One Bar 201.14 Sqmm

Spacing of Bars 60 mm

Max Shear Force wL/2 218.22 KN

Page 26: Retaining Wall Design

Percentage of Tensile Steel 100At/2bd = 1.20 %

(at the end, alternate bar are bent up)

Design Shear Strength 0.685 N/ Sqmm

Calculated k Value

INPUT For 365 mm thick slab, k=

Permissible Max Shear Stress 0.685 N/ Sqmm

Nominal Shear stress Vu/bd 0.78 N/ Sqmm

Shear Check Un safe

DESIGN OF STEM WALL

SPAN OF WALL L3 4.40 M

MAX BM AT BOTTOM OF WALL Mw 103.63 KN-m

SHEAR FORCE Vmax 46.27 KN

DESIGN OF STEM WALL TO RESIST BENDING MOMENT

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 1.0 Mtr

Max BM Mx 103.63 KN-M

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 173 mm 309

RESULT Adopt Effective Depth d 310 mm

INPUT Use Dia of Stem Wall rft 16 mm

Adopt Cover for Stem wall 75 mm

Over all Depth of Base Slab D 395 mm

Width of Slab considered for Cal 1000 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 1.08

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

1.08 0.315 978 Sqmm

Min area of Tension Steel Ao=0.85*bd/fy 634.94 Sqmm

Max area of Tensile Steel = 0.04 bD 15800 Sqmm

Provide Area of Tension Steel 978 Sqmm

Area of One Bar 201.14 Sqmm 16

RESULT Spacing of Main Bars 200 mm 16

Min Area of Steel 0.12 % 474 Sqmm

Page 27: Retaining Wall Design

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

592.5 Sqmm

INPUT Use 16 mm Dia bars as distribution Rft

Area of One Bar 201.14 Sqmm 16

RESULT Spacing of Distribution Bars 330 mm 16

CURTAILMENT REINFORCEMENT

DEPTH FROM TOP OF EMBANKMENT 2.4 Mtr

AREA OF REINFORCEMENT 489 Sqmm

Use Dia of Stem Wall rft 16 mm 20

Area of One Bar 201.14 Sqmm

Spacing of Distribution Bars 400 mm 16

DISTRIBUTION STEEL

DEPTH FROM TOP OF EMBANKMENT 2.4 Mtr

AREA OF REINFORCEMENT 592.5 Sqmm

Use Dia of Stem Wall rft 16 mm 16

Area of One Bar 201.14 Sqmm

Spacing of Distribution Bars 330 mm 16

DESIGN/ CHECK FOR STEM WALL TO RESIST SHEAR

Grade of Concrete M 25

Effective Depth 310 mm

Over allDepth of Slab 395 mm

Dia of Shear rft 16 mm

Area of One Bar 201.14 Sqmm

Spacing of Bars 200 mm

Max Shear Force wL/2 46.27 KN

Percentage of Tensile Steel 100At/2bd = 0.32 %

(at the end, alternate bar are bent up)

Design Shear Strength 0.408 N/ Sqmm

Calculated k Value

INPUT For 395 mm thick slab, k=

Permissible Max Shear Stress 0.408 N/ Sqmm

Nominal Shear stress Vu/bd 0.15 N/ Sqmm

Shear Check Safe

Page 28: Retaining Wall Design
Page 29: Retaining Wall Design

(Ex 14.1 Dhayaratnam& Ex 19.3 AK Jain)

Soil Ws KN/Sqm θ Rg θ Mean µ β Fr bet soil & wall

Sand 17-20 25-35 30 0.55 29

Medium Clay 16-18 14-28 21 0.4 22

Soft Clay 15-17 4-16 10 0.33 18

Ka= Cos C((Cos C- Sqrt(Cos C^2-Cos θ^2))/(Cos C+ Sqrt(Cos C^2-Cos θ^2))) = ((1-SIN(θ))/(1+SIN(θ))^2

h=SBC/Ws*(1-sin θ /1+sin θ )^2

DEPTH=H/4 AND NOT LESS THAN MIN DEPTH/ 1.00Mtr DEPTH OF FDN

Ht=H+DEPTH

α=0.36*(SQRT(1+(3.4*SBC)/(Ws*Ht))-1) TO 0.45*(SQRT(1+(3*SBC)/(Ws*Ht))-1α=HEEL WIDTH/BASE WIDTH

B=0.5*Ht*SQRT(Ka/(α(1-0.55*α))

GENERALLY B=Ht/3 AND NOT LESS THAN B(MIN)

GIVE VALUE=0 IF THERE IS NO SURCHARGE

D=Ht/12 to Ht/20

BASE SLAB THICKNESS

T=Ht/10 to H/15 H=

WALL THICKNESS AT BOT 3000

Th at Top T2 = T1/2 WALL THICKNESS AT TOP

W1=B*D*25

W2=(T1+T2)/2*(H-D)*25

W3=ALPHA*B*(Ht-D)*Ws+Ps*ALPHA*

W=W1+W2+W3 EXIST. GL

P1=Ka*Ws*Ht*Ht/2

Ps=ps*Ht

h=

X1=B/2

X2=B-ALPHA*B-T1/2

X3=B-ALPHA*B/2 1800

Y1=Ht/3 D=

Y2=Ht/2 320

W1*X1+W2*X2+W3*X3/(V )

RCC RETAINING WALL(CANTILEVERTYPE) MAX 6.0 MTR HEIGHT AND CLOLUMNS IN LINE

(WHERE WATER TABLE IS BELOW BASE OF FOOTING)

Page 30: Retaining Wall Design

16 # @

R=V*V+H*H 410 mm c/c

X=(W1*X1+W2*X2+W3*X3+Ph*Y1+Ps*Y2)/R

e=X-B/2 16 # @

Pmax=W/B(1-6*e/B) CHECK Pmax < SBC 400 mm c/c

Pmin=W/B(1-6*e/B) CHECK Pmin>O (TO RESIST VERTICAL UP PR)

FOS=(W1*X1+W2*X2+W3*X3)/(P*Y1+Ps*Y2) CHECK FOS>1.5

FOS=u*W/(Ph+Ps) CHECK FOS>1.5

ALL DIMENSIONS ARE IN MILLIMETRES

FROM IS 456 TABLE FOR M25= 0.29/MM2 FOR M30=0.29N/MM2

THICKNESS OF KEY=(P+Ps)*1.5/Tc SHEAR KEY THICK

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

d=D-COVER 100 As/bd β SS N/Sqmm

L1=B-B2-T 0.20 14.51 0.331

W4=D*25

Mt=(W4+Pmax)*L1*L1/2

V=(Pmax*(L1-d))*1.5

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

800

Steel

Page 31: Retaining Wall Design

mm Dia

mm Dia

mm Dia bars as distribution Rft

mm Dia

mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

0.21 13.85 0.338

N/ Sqmm

1.00 Value of K

1.00 Ds >300 275 250 225 200 175 <151

k 1.00 1.05 1.10 1.15 1.20 1.25 1.30

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

L2=ALPHA*B

Wp=Pmin+(Pmax-Pmin)*alpha

W5=Ws*(Ht-D)

W6=25*D

Mh=Wp+W5+W6)*L2*L2

V=(Pheel*(L2-d))*1.5

Page 32: Retaining Wall Design

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

mm Dia

mm Dia

mm Dia bars as distribution Rft

mm Dia

mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

Steel

Page 33: Retaining Wall Design

1.20 2.42 0.685

N/ Sqmm

1.00 Value of K

1.00 Ds >300 275 250 225 200 175 <151

k 1.00 1.05 1.10 1.15 1.20 1.25 1.30

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

L3=Ht-D

Mw=Ph* Ht/3+Ps*Ht/2L3*L3+PsL3*L3/2

V=(Pheel*(L2-d))*1.5

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

mm Dia

mm Dia

Steel

Page 34: Retaining Wall Design

mm Dia bars as distribution Rft

mm Dia

mm Dia

mm Dia

mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

0.32 8.95 0.408

N/ Sqmm

1.00 Value of K

1.00 Ds >300 275 250 225 200 175 <151

k 1.00 1.05 1.10 1.15 1.20 1.25 1.30

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

Page 35: Retaining Wall Design
Page 36: Retaining Wall Design

0 KN/M SURCHARGE

MADE UP GLMADE UP GL

t= 200

ANGLE OF SURCHARGE C

16 # @

400 mm c/c

EARTH FILLING SIDE

16 # @

330 mm c/c

16 # @

200 mm c/c

16 # @

2240 200 mm c/c

16 # @

330 mm c/c

16 # @

60 mm c/c

(TO RESIST VERTICAL DOWN PRESSURE)

704

Page 37: Retaining Wall Design

16 # @

0.00 360 mm c/c

16 # @

160 mm c/c

1000

(TO RESIST VERTICAL UP PR)

T=

400

B= 4600

ALL DIMENSIONS ARE IN MILLIMETRES

800 3400

Page 38: Retaining Wall Design

INPUT DATAS

INPUT GRADE OF CONCRETE fck 25 N/mm2

INPUT GRADE OF STEEL f y 415 N/mm2

INPUT ANGLE OF REPOSE OF SOIL θ 30 DEG

INPUT BULK DENSITY OF SOIL Ws 16 KN/m3

INPUT SOIL SAFE BEARING CAPACITY SBC 200 KN/m2

INPUT ANGLE OF SURCHARGE OF FILL C 15 DEG

INPUT CLEAR SPACING OF COUNTERFORT L 3.24 3.00 mtr 3.00

INPUT THICKNESS OF COUNTERFORT Tc 0.30 mtr 0.30

C/C SPACING OF COUNTERFORT Lc 3.30 mtr

INPUT BASE WIDTH OF FRONT COUNTERFORT B2 1.25 mtr

INPUT HT OF FRONT COUNTERFORT ABOVE BASE SLAB 3.00 mtr

INPUT COEFFT OF FRICTION µ 0.6

COS C 0.966

COS θ 0.866

COEFFT OF ACTIVE PRESSURE Ka 0.373 0.334

COEFFT OF PASSIVE PRESSURE Kp 2.680

INPUT HEIGHT OF FILLING H 6.00 mtr

MIN DEPTH OF FDN h 1.39 mtr

INPUT PROVIDE DEPTH OF FDN D h/4= 1.5 1.50 mtr 1.50

TOTAL HT OF WALL Ht=H+D 7.50 mtr

CONST α 0.242

Toe Length TL 0.90 1.25 mtr 1.25

Heel Length HL 3.25 mtr

CALCULATED BASE WIDTH B(MIN) Bm 3.72 mtr

INPUT PROVIDE BASE WIDTH B B 4.75 mtr 4.75

BASE WIDTH OF REAR COUNTERFORT B1 3.25 mtr

INPUT SURCHARGE ps ps 2.00 KN/m

BASE SLAB THICK D(MIN) 409 mm

INPUT PROVIDE BASE SLAB THICK D 409 mm 400

WALL THICK AT BOTTOM T(MIN) 250 mm

INPUT PROVIDE WALL THICK AT BOTTOM T1 250 mm 0

INPUT PROVIDE WALL THICK AT TOP T2 250 250 mm 0

CHECK FOR BEARING PRESSURE

WT OF BASE SLAB/FOOTING W1 48.53 KN/m

WT OF STEM/ WALL RECTANGLE PART W2 44.32 KN/m

WT OF STEM/ WALL TRIANGLE PART W3 0.00 KN/m

WT OF REAR SOIL OVER HEEL W4 371.05 KN/m

WT/ AXIAL LOAD FROM COLUMN W5 0.00 KN/m

TOTAL STABILISING VERTICAL FORCE W 463.90 KN/m

HORIZONTAL EARTH PRESSURE Ph 150.12 KN/m

HORIZONTAL SURCHARGE Ps 50.29 KN/m

(WHERE WATER TABLE IS BELOW BASE OF FOOTING)

(Ex 15.4 RCC by BC Punmia & Ex 12.5 Vazrani and Ratwani)

RCC COUNTERFORT RETAINING WALL (HT ABOVE 6 MTR) INCL COLUMN LOAD IN LINE

Page 39: Retaining Wall Design

TOTAL HORIZONTAL PRESSURE V 200.41 KN/m

DISTANCE OF W1 FROM TOE FRONT TIP X1 X1 2.38 mtr

DISTANCE OF W2 FROM TOE FRONT TIP X2 1.38 mtr

DISTANCE OF W3 FROM TOE FRONT TIP X3 1.40 mtr

DISTANCE OF W3 FROM TOE FRONT TIP X4 3.33 mtr

DISTANCE OF W3 FROM TOE FRONT TIP X5 1.38 mtr

HT OF HORT FORCE Y1 FROM TOE TOP Y1 2.36 mtr

HT OF SUR FORCE Y2 FROM TOE TOP Y2 3.55 mtr

DIST OF ΣVERT REACTION FROM TOE FRONT TIP 3.04 mtr

CALCULATION OF PRESSURE

REACTION OF FORCES 505.34 KN

DIST OF REACTION FROM TOE X 1.74 m

ECCENTRICITY e FROM CETRE OF BASE SLAB -0.64 m

PRESSURE AT TOE TIP Pmax 0 18.78 KN/m2 200

PRESSURE AT HEEL TIP Pmax 0 176.54 KN/m2 200

PRESSURE AT TOE FACE OF VER STEM 60.30 KN/m2

PRESSURE AT HEEL FACE OF VER STEM 68.60 KN/m2

FOS AGAINST OVERTURNING 2.75

FOS AGAINST SLIDING 1.39

DESIGN OF SHEAR KEY

INPUT PERMISSIBLE SHEAR STRESS Tc 0.33 N/mm2

THICKNESS OFKEY 910 mm 0

DEPTH OF KEY 0.00 m

KEY REINFORCEMENT 1092 mm2

INPUT PROVIDE DIA OF STEEL BAR 10 mm

SPACING OF BARS 70 mm

DESIGN OF BASE SLAB

DESIGN OF TOE SLAB

EFFECTIVE DEPTH OF TOE d 334 mm

SPAN OF TOE L1 1.25 m

WT OF FOOTING W4 10.22 KN/m

MAX BM AT BASE OF TOE BOTTOM NEAR COUNTERFORT EDGE Mt 56.34 KN-m

SHEAR FORCE Vmax 154.35 KN

DESIGN OF TOE SLAB TO RESIST BENDING MOMENT

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 1.0 Mtr

Max BM Mx 56.34 KN-M

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 128 mm 324

RESULT Adopt Effective Depth d 330 mm

INPUT Use Dia of Slab rft 10 mm

Adopt Cover for Slab 75 mm

Over all Depth of Base Slab D 410 mm

Width of Slab considered for Cal 1000 mm

Grade of Concrete M 25

OR INCREASE WIDTH OF FDN

Page 40: Retaining Wall Design

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 0.52

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

0.52 0.147 485 Sqmm

Min area of Tension Steel Ao=0.85*bd/fy 675.90 Sqmm

Max area of Tensile Steel = 0.04 bD 16400 Sqmm

Provide Area of Tension Steel 676 Sqmm

Area of One Bar 78.57 Sqmm 10

RESULT Spacing of Main Bars 110 mm 10

Min Area of Steel 0.12 % 492 Sqmm

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

615 Sqmm

INPUT Use 10 mm Dia bars as distribution Rft

Area of One Bar 78.57 Sqmm 10

RESULT Spacing of Distribution Bars 120 mm 10

DESIGN/ CHECK FOR TOE SLAB TO RESIST SHEAR

Grade of Concrete M 25

Effective Depth 330 mm

Over allDepth of Slab 410 mm

Dia of Shear rft 10 mm

Area of One Bar 78.57 Sqmm

Spacing of Bars 110 mm

Max Shear Force wL/2 154.35 KN

Percentage of Tensile Steel 100At/2bd = 0.22 %

(at the end, alternate bar are bent up)

Design Shear Strength 0.342 N/ Sqmm

Calculated k Value

INPUT For 410 mm thick slab, k=

Permissible Max Shear Stress 0.342 N/ Sqmm

Nominal Shear stress Vu/bd 0.47 N/ Sqmm

Shear Check Un safe

Page 41: Retaining Wall Design

Design of Stirrups

Grade of Concrete M 25

Grade of Steel Fe 415

Effective Depth of Beam 330 mm

Over all Depth of Beam 410 mm

Width of Beam 1000 mm

Max Shear Force wl/2 Vu 154.35 KN

Strength of Shear rft Vus=Vu-Tc bd 41336 N

INPUT Dia of Shear rft 12 mm

Area of One Bar 113.14 Sqmm

INPUT No of legged vertical stirrups 4 Nos

Area of Vertical Stirrup Rft Asv 452.57 mm

RESULT Spacing of Shear rft x=0.87 fy Asv d/ Vus 1300 mm 420

Check for Spacing OK Min Spacing is 100 mm for placing of Concrete, Max 450 mm

Min Area of Shear rft 0.4 b x /fy 404.82 Sqmm

Check for min Shear rft Area OK If NOT OK then Increase the size of Rft oa more No of Legs

DESIGN OF HEELSLAB

SPAN OF HEEL L2 3.25 M

PRESSURE AT HEEL Wp 68.60 KN/m2

WT OF SOIL OVER HEEL W4 113.46 KN/m

WT OF HEEL W1a 10.22 KN/m

MAX BM AT HEEL TOP at Counterfort Mh 61.96 KN-m

SHEAR FORCE Vmax 123.92 KN

DESIGN OF HEEL SLAB TO RESIST BENDING MOMENT

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 1.0 Mtr

Max BM Mx 61.96 KN-M

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 134 mm 324

RESULT Adopt Effective Depth d 330 mm

INPUT Use Dia of Slab rft 12 mm

Adopt Cover for Slab 75 mm

Over all Depth of Base Slab D 410 mm

Width of Slab considered for Cal 1000 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 0.57

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

0.57 0.162 535 Sqmm

Page 42: Retaining Wall Design

Min area of Tension Steel Ao=0.85*bd/fy 675.90 Sqmm

Max area of Tensile Steel = 0.04 bD 16400 Sqmm

Provide Area of Tension Steel 676 Sqmm

Area of One Bar 113.14 Sqmm 12

RESULT Spacing of Main Bars 160 mm 12

Min Area of Steel 0.12 % 492 Sqmm

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

615 Sqmm

INPUT Use 12 mm Dia bars as distribution Rft

Area of One Bar 113.14 Sqmm 12

RESULT Spacing of Distribution Bars 180 mm 12

DESIGN/ CHECK FOR HEEL SLAB TO RESIST SHEAR

Grade of Concrete M 25

Effective Depth 330 mm

Over allDepth of Slab 410 mm

Dia of Shear rft 12 mm

Area of One Bar 113.14 Sqmm

Spacing of Bars 160 mm

Max Shear Force wL/2 123.92 KN

Percentage of Tensile Steel 100At/2bd = 0.21 %

(at the end, alternate bar are bent up)

Design Shear Strength 0.341 N/ Sqmm

Calculated k Value

INPUT For 410 mm thick slab, k=

Permissible Max Shear Stress 0.341 N/ Sqmm

Nominal Shear stress Vu/bd 0.38 N/ Sqmm

Shear Check Un safe

Design of Stirrups

Grade of Concrete M 25

Grade of Steel Fe 415

Effective Depth of Beam 330 mm

Over all Depth of Beam 410 mm

Width of Beam 1000 mm

Page 43: Retaining Wall Design

Max Shear Force wl/2 Vu 123.92 KN

Strength of Shear rft Vus=Vu-Tc bd 11399 N

INPUT Dia of Shear rft 10 mm

Area of One Bar 78.57 Sqmm

INPUT No of legged vertical stirrups 2 Nos

Area of Vertical Stirrup Rft Asv 157.14 mm

RESULT Spacing of Shear rft x=0.87 fy Asv d/ Vus 1640 mm 420

Check for Spacing OK Min Spacing is 100 mm for placing of Concrete, Max 450 mm

Min Area of Shear rft 0.4 b x /fy 404.82 Sqmm

Check for min Shear rft Area NOT OK If NOT OK then Increase the size of Rft oa more No of Legs

DESIGN OF STEM WALL

SPAN / HT OF STEM WALL L3 7.09 M

HORIZONTAL PRESSURE ON STEM WALL Ph 40.90 KN/m2

CLEAR SPACING OF COUNTERFORT L L 3.00 M

MAX BM AT BOTTOM OF WALL Mw Mw 46.01 KN-m

SHEAR FORCE Vmax V 61.35 KN

DESIGN OF STEM WALL TO RESIST BENDING MOMENT

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 1.0 Mtr

Max BM Mx 46.01 KN-M

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 116 mm 200

RESULT Adopt Effective Depth d 200 mm

INPUT Use Dia of Stem Wall rft 12 mm

Adopt Cover for Stem wall 40 mm

Over all Depth of Base Slab D 245 mm

Width of Slab considered for Cal 1000 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 1.15

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

1.15 0.337 675 Sqmm

Min area of Tension Steel Ao=0.85*bd/fy 409.64 Sqmm

Max area of Tensile Steel = 0.04 bD 9800 Sqmm

Provide Area of Tension Steel 675 Sqmm

Area of One Bar 113.14 Sqmm 12

RESULT Spacing of Main Bars 160 mm 12

Page 44: Retaining Wall Design

Min Area of Steel 0.12 % 294 Sqmm

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

367.5 Sqmm

INPUT Use 12 mm Dia bars as distribution Rft

Area of One Bar 113.14 Sqmm 12

RESULT Spacing of Distribution Bars 300 mm 12

CURTAILMENT REINFORCEMENT

DEPTH FROM TOP OF EMBANKMENT 3.75 Mtr

AREA OF REINFORCEMENT 337.5 Sqmm

Use Dia of Stem Wall rft 12 mm 20

Area of One Bar 113.14 Sqmm

Spacing of Distribution Bars 320 mm 12

DISTRIBUTION STEEL

DEPTH FROM TOP OF EMBANKMENT 3.75 Mtr

AREA OF REINFORCEMENT 367.5 Sqmm

Use Dia of Stem Wall rft 12 mm 16

Area of One Bar 113.14 Sqmm

Spacing of Distribution Bars 300 mm 12

DESIGN/ CHECK FOR STEM WALL TO RESIST SHEAR

Grade of Concrete M 25

Effective Depth 200 mm

Over allDepth of Slab 245 mm

Dia of Shear rft 12 mm

Area of One Bar 113.14 Sqmm

Spacing of Bars 160 mm

Max Shear Force wL/2 61.35 KN

Percentage of Tensile Steel 100At/2bd = 0.35 %

(at the end, alternate bar are bent up)

Design Shear Strength 0.423 N/ Sqmm

Calculated k Value

INPUT For 245 mm thick slab, k=

Permissible Max Shear Stress 0.466 N/ Sqmm

Nominal Shear stress Vu/bd 0.31 N/ Sqmm

Shear Check Safe

Page 45: Retaining Wall Design

DESIGN OF FRONT COUNTER FORT (OVER TOE) TO RESIST BENDING MOMENT

Length of Front Counter Fort 1.25 Mtr

Earth Pressure at tip of Counter Fort w1 18.78 KN/Sqm

Earth Pressure at Stem of Counter Fort w3 60.30 KN/Sqm

Ht of Front Counterfort Above Base Slab 3.00 Mtr

C/C dist between Counter Fort 3.30 Mtr

Max BM due to Earth Pressure 101.94 KN M 84.10 101.94

Max SF due to Earth Pressure 163.11 KN

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 0.3 Mtr

Max BM Mx 101.94 N-MM

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 314 mm

RESULT Adopt Effective Depth d 320 mm

INPUT Use Dia of Slab rft 16 mm

Adopt Cover for Slab 50 mm

Over all Depth of Base Slab D 380 mm

Width of Slab considered for Cal 300 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 3.32

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

3.32 1.132 1087 Sqmm

Min area of Tension Steel Ao=0.85*bd/fy 196.63 Sqmm

Max area of Tensile Steel = 0.04 bD 4560 Sqmm

Provide Area of Tension Steel 1087 Sqmm

Area of One Bar 201.14 Sqmm 16

RESULT No of Main Bars 6 Nos 16

Min Area of Steel 0.12 % 456 Sqmm

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

570 Sqmm

INPUT Use 16 mm Dia bars as distribution Rft

Area of One Bar 201.14 Sqmm 16

Page 46: Retaining Wall Design

RESULT Spacing of Distribution Bars 350 mm 16

INPUT Provided Depth of Front Counter Fort 1250 mm 1250

Shear Force at d away from Stem

DESIGN/ CHECK FOR FRONT COUNTER FORT WALL TO RESIST SHEAR

Grade of Concrete M 25

Effective Depth 320 mm

Over allDepth of Slab 380 mm

Dia of Shear rft 16 mm

Area of One Bar 201.14 Sqmm

No of Bars 6 Nos

Max Shear Force wL/2 163.11 KN

Percentage of Tensile Steel 100At/2bd = 1.26 %

(at the end, alternate bar are bent up)

Design Shear Strength 0.697 N/ Sqmm

Calculated k Value

INPUT For 380 mm thick slab, k=

Permissible Max Shear Stress 0.697 N/ Sqmm

Nominal Shear stress Vu/bd 0.51 N/ Sqmm

Shear Check Safe

Provide 10 mm dia 2 legged stirrup at 200 C/C to connect with stem

DESIGN OF REAR COUNTER FORT (OVER HEEL) TO RESIST BENDING MOMENT

Height of Front Counter Fort 7.50 Mtr

Base Widh of Front Counter Fort 3.25 Mtr

Inclination of Counter Fort θ= 0.4089 Radian 23.43 Degree

Ht of Earth Filling Above GL 7.09 Mtr

Max BM = wh^3*(1-sinφ)/(1+sinφ)*3/6 950.96 KN m

SF/HorizThrust wh^2*(1-sinφ)/(1+sinφ)*3/2 402.30 KN

Effective depth d= h*sin θ-cover 2,902 mm

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 0.3 Mtr

Max BM Mx 950.96 N-MM

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 959 mm 1200

RESULT Adopt Effective Depth d 1200 mm

INPUT Use Dia of Slab rft 20 mm

Adopt Cover for Slab 50 mm

Over all Depth of Base Slab D 1260 mm

Width of Slab considered for Cal 300 mm

Grade of Concrete M 25

Page 47: Retaining Wall Design

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 2.20

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

2.20 0.688 2479 Sqmm

Sqmm

Provide Area of Tension Steel 2479 Sqmm

Area of One Bar 314.29 Sqmm 20

RESULT No of Main Bars 8 Nos 20

Min Area of Steel 0.12 % 1512 Sqmm

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

1890 Sqmm

INPUT Use 16 mm Dia bars as distribution Rft

Area of One Bar 201.14 Sqmm 16

RESULT Spacing of Distribution Bars 110 mm 16

DESIGN/ CHECK FOR REAR COUNTER FORT WALL TO RESIST SHEAR

SF/HorizThrust wh^2*(1-sinφ)/(1+sinφ)*3/2 402.30 KN

Net SF= F-M*tan θ/d' 87.21 KN

Grade of Concrete M 25

Effective Depth 1200 mm

Over allDepth of Slab 1260 mm

Dia of Shear rft 20 mm

Area of One Bar 314.29 Sqmm

No of Bars 8 Nos

Max Shear Force wL/2 87.21 KN

Percentage of Tensile Steel 100At/2bd = 0.70 %

(at the end, alternate bar are bent up)

Design Shear Strength 0.559 N/ Sqmm

Calculated k Value

INPUT For 1260 mm thick slab, k=

Permissible Max Shear Stress 0.559 N/ Sqmm

Nominal Shear stress Vu/bd 0.07 N/ Sqmm

Shear Check Safe

Provide 10 mm dia 2 legged stirrup at 200 C/C to connect with stem

Page 48: Retaining Wall Design
Page 49: Retaining Wall Design

Soil Ws KN/Sqm θ Rg θ Mean µ β Fr bet soil & wall

Sand 17-20 25-35 30 0.55 29

Medium Clay 16-18 14-28 21 0.4 22

Soft Clay 15-17 4-16 10 0.33 18

D=22*(H/γ)^(1/4)

T= H/10

B1=(B-Tc)/2

H=

0

Ka= Cos C((Cos C- Sqrt(Cos C^2-Cos θ^2))/(Cos C+ Sqrt(Cos C^2-Cos θ^2))) = ((1-SIN(θ))/(1+SIN(θ))^2

1/ka

h=SBC/Ws*(1-sin θ /1+sin θ )^2

DEPTH=H/4 AND NOT LESS THAN MIN DEPTH/ 1.00Mtr DEPTH OF FDN EXIST. GL

Ht=H+DEPTH

α= 1- q0/(2γH) α=TOE WIDTH/BASE WIDTH

αBm h=

B- αBm-T1

H*(Sqrt((1-sino/1+sino)/(1-k * (3*k+1)))*H Vaz Rat Page 437

B1=(B-Tc)/2, Alpha*B,F32) #VALUE!

GIVE VALUE=0 IF THERE IS NO SURCHARGE D=

0

D=40*L*H^0.5+80

BASE SLAB THICKNESS

T=Ht/10 to H/15 0 # @

WALL THICKNESS AT BOT 0 mm c/c

Th at Top T2 = T1 /2 WALL THICKNESS AT TOP

25 # @

0 mm c/c

W1=B*D*25 (TO RESIST VERTICAL UP PR)

W2=(T1)*(H-D)*25

W3=(T2-T1)/2*(H-D)*25

W4=ALPHA*B*(Ht-D)*Ws+Ps*ALPHA*

AXIAL LOAD FROM COLUMN IN LINE WITH RETAING WALL

W=W1+W2+W3+W4

P1=Ka*Ws*Ht*Ht/2 NAME FORCE LVR ARM MOM @ Toe ALL DIMENSIONS ARE IN MILLIMETRES

Ps=ps*Ht W1 48.53 2.38 115.25

GENERALLY B=0.5H TO 0.6H AND NOT LESS THAN B(MIN) REF PUNMIA PP 857

(WHERE WATER TABLE IS BELOW BASE OF FOOTING)

(Ex 15.4 RCC by BC Punmia & Ex 12.5 Vazrani and Ratwani)

RCC COUNTERFORT RETAINING WALL (HT ABOVE 6 MTR) INCL COLUMN LOAD IN LINE

#VALUE!

Page 50: Retaining Wall Design

W2 44.32 1.38 60.94

X1=B/2 W3 0.00 1.40 0.00

ALPHA*B+T1/2 W4 371.05 3.33 1234.04

ALPHA*B+T1+(T2-T1)/3 W5 0.00 1.38 0.00

X3=B-ALPHA*B/2 W 463.90 3.04 1410.22

Ph 150.12 2.36 354.86

Y1=Ht/3 Ps 50.29 3.55 178.30

Y2=Ht/2 V 200.41 2.66 533.16

W1*X1+W2*X2+W3*X3/(V ) R 505.34 1.74 877.06

R=V*V+H*H

X=(W1*X1+W2*X2+W3*X3+Ph*Y1+Ps*Y2)/R

e=X-B/2 (- SIGN FOR RESULTANT FORCE AWAY TO HEAL SIDE OF STEM SLAB)CHECK Pmax < SBC

Pmax=W/B(1+6*e/B) CHECK Pmin>O

Pmin=W/B(1-6*e/B)

CHECK FOS>1.5

CHECK FOS>1.5

FOS=(W1*X1+W2*X2+W3*X3)/(P*Y1+Ps*Y2)

FOS=u*W/(Ph+Ps)

FROM IS 456 TABLE FOR M25= 0.29/MM2 FOR M30=0.29N/MM2

THICKNESS OF KEY=(P+Ps)*1.5/Tc SHEAR KEY THICK

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

d=D-COVER 100 As/bd β SS N/Sqmm

L1=B-B2-T 0.20 14.51 0.331

W4=D*25

Mt=(W4+Pmax)*L1*L1/2

V=(Pmax*(L1-d))*1.5

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d H=

415 0.48 d 6.00

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

Steel

Page 51: Retaining Wall Design

15 2.229 2.067 1.991 1.949 EXIST. GL

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547 h=

1.50

D=

0.41

mm Dia

SBC 18.78

mm Dia 200

mm Dia bars as distribution Rft

mm Dia

mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

0.22 13.41 0.342

N/ Sqmm

1.00 Value of K

1.00 Ds >300 275 250 225 200 175 <151

k 1.00 1.05 1.10 1.15 1.20 1.25 1.30

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

1.25

4.75

TOE

Page 52: Retaining Wall Design

12 mm Dia 4 Legs

Min Spacing is 100 mm for placing of Concrete, Max 450 mm

If NOT OK then Increase the size of Rft oa more No of Legs

HL

Wp=(P2+P4)/2

W5=Ws*(Ht-D)

W6=25*D

Mh=Wp+W5+W6)*L2*L2

V=Pheel/2*clear width of counterfort*1.5

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

Steel

Page 53: Retaining Wall Design

mm Dia

mm Dia

mm Dia bars as distribution Rft

mm Dia

mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

0.21 13.55 0.341

N/ Sqmm

1.00 Value of K

1.00 Ds >300 275 250 225 200 175 <151

k 1.00 1.05 1.10 1.15 1.20 1.25 1.30

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

Page 54: Retaining Wall Design

10 mm Dia 2 Legs

Min Spacing is 100 mm for placing of Concrete, Max 450 mm

If NOT OK then Increase the size of Rft oa more No of Legs

L3=Ht-D

Ka *γ* H *Cos c

Mw=Ph* L^2/8

V=Ph*L/2

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

mm Dia

mm Dia

Steel

Page 55: Retaining Wall Design

mm Dia bars as distribution Rft

mm Dia

mm Dia

mm Dia

mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

0.35 8.21 0.423

N/ Sqmm

1.10 Value of K

1.10 Ds >300 275 250 225 200 175 <151

k 1.00 1.05 1.10 1.15 1.20 1.25 1.30

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

Page 56: Retaining Wall Design

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

mm Dia

mm Dia

mm Dia bars as distribution Rft

mm Dia

Steel

Page 57: Retaining Wall Design

mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

1.26 2.31 0.697

N/ Sqmm

1.00 Value of K

1.00 Ds >300 275 250 225 200 175 <151

k 1.00 1.05 1.10 1.15 1.20 1.25 1.30

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

Steel

Page 58: Retaining Wall Design

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

mm Dia

mm Dia

mm Dia bars as distribution Rft

mm Dia

mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

0.70 4.16 0.559

N/ Sqmm

1.00 Value of K

1.00 Ds >300 275 250 225 200 175 <151

k 1.00 1.05 1.10 1.15 1.20 1.25 1.30

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

Page 59: Retaining Wall Design
Page 60: Retaining Wall Design

mm KN/M SURCHARGE

MADE UP GLMADE UP GL

t= 0

ANGLE OF SURCHARGE C

0 # @

0 mm c/c

EARTH FILLING SIDE

0 # @

0 mm c/c

0 # @

0 mm c/c

0 # @

#VALUE! 0 mm c/c

0 # @

0 mm c/c

0 # @

0 mm c/c

(TO RESIST VERTICAL DOWN PRESSURE)

0

0 # @

mm 0 mm c/c

mm # @

Sqmm mm c/c

0

(TO RESIST VERTICAL UP PR)

T=

0

B= #VALUE!

ALL DIMENSIONS ARE IN MILLIMETRES

#VALUE!#VALUE!

Page 61: Retaining Wall Design

2.00 KN/M SURCHARGE

MADE UP GLMADE UP GL

W5

0.00

t= 250

ANGLE OF SURCHARGE C

EARTH FILLING SIDE

Ps

50.29

Ph

150.12

W2

44.32

Page 62: Retaining Wall Design

W3 W4

0.00 371.05

R

ecc=

-0.64

0.25

W1

48.53

60.30 68.60 176.54

HEEL

1.25 3.25

4.75

TOE

Page 63: Retaining Wall Design
Page 64: Retaining Wall Design
Page 65: Retaining Wall Design

0 KN/M SURCHARGE

MADE UP GLMADE UP GL

Page 66: Retaining Wall Design

t= 0

ANGLE OF SURCHARGE C

0 # @

0 mm c/c

EARTH FILLING SIDE

H=

0 0 # @

0 mm c/c

0 # @

0 mm c/c

0 # @

EXIST. GL 0 0 mm c/c

0 # @

0 mm c/c

0 # @

h= 0 mm c/c

(TO RESIST VERTICAL DOWN PRESSURE)

0

D= 0

0

0 # @ 0 # @

0 mm c/c 0.00 0 mm c/c

0 # @

0 # @ 0 mm c/c

0 mm c/c 0

(TO RESIST VERTICAL UP PR)

T=

0

B= 0

ALL DIMENSIONS ARE IN MILLIMETRES

0 0

Page 67: Retaining Wall Design
Page 68: Retaining Wall Design
Page 69: Retaining Wall Design
Page 70: Retaining Wall Design
Page 71: Retaining Wall Design
Page 72: Retaining Wall Design
Page 73: Retaining Wall Design
Page 74: Retaining Wall Design
Page 75: Retaining Wall Design
Page 76: Retaining Wall Design

MADE UP GL

Page 77: Retaining Wall Design

(TO RESIST VERTICAL DOWN PRESSURE)

Page 78: Retaining Wall Design

COUNTERFORT RCC RETAINING WALL

(Ex 14.5 Dhayaratnam, Ex 12.4 Vazirani and Ratwani)

INPUT DATAS

INPUT GRADE OF CONCRETE fck 25 N/mm2

INPUT GRADE OF STEEL f y 415 N/mm2

INPUT ANGLE OF REPOSE OF SOIL θ 30 DEG

INPUT BULK DENSITY OF SOIL Ws 20 KN/m2

INPUT SOIL SAFE BEARING CAPACITY SBC 200 KN/m2

INPUT ANGLE OF SURCHARGE OF FILL C 0 DEG

INPUT CLEAR SPACING OF COUNTERFORT L 3.00 mtr

INPUT THICKNESS OF COUNTERFORT Tc 0.30 mtr

C/C SPACING OF COUNTERFORT Lc 3.30 mtr

INPUT BASE WIDTH OF FRONT COUNTERFORT B2 2.30 mtr

INPUT HT OF FRONT COUNTERFORT ABOVE BASE SLAB 3.00 mtr

INPUT COEFF OF FRICTION µ 0.55

COS C 1

COS θ 0.866

COEFFT Of ACTIVE PRESSURE Ka 0.334

COEFFT Of PASSIVE PRESSURE Kp 2.998

INPUT HEIGHT OF FILLING H 7.5 mtr

MIN DEPTH OF FDN h 1.11 mtr

INPUT PROVIDE DEPTH OF FDN D 1.50 mtr

TOTAL HT OF WALL Ht=H+D 9.00 mtr

CONST (Select FACTOR αb from the range ) α= 0.427 0.427

CALCULATED BASE WIDTH B(MIN) 5.00 mtr

INPUT PROVIDE BASE WIDTH B 5.00 mtr

BASE WIDTH OF REAR COUNTERFORT B1 2.40 mtr

INPUT SURCHARGE ps 0 KN/m

BASE SLAB THICK D(MIN) 450 mm

INPUT PROVIDE BASE SLAB THICK D 450 mm

WALL THICK AT BOTTOM T(MIN) 300 mm

INPUT PROVIDE WALL THICK AT BOTTOM T1 300 mm

INPUT PROVIDE WALL THICK AT TOP T2 150 mm

CHECK FOR BEARING PRESSURE

WT OF BASE SLAB/FOOTING W1 185.63 KN

WT OF STEM/ WALL W2 158.71 KN

WT OF REAR COUNTERFORT Wcf1 76.95 KN

WT OF FRONT COUNTERFORT Wcf2 25.88 KN

WT OF REAR SOIL OVER HEEL W3 1231.20 KN

TOTAL STABILISING VERTICAL FORCE V OVER C/C CF DIST 1678.36 KN

HORIZONTAL EARTH PRESSURE Ph 731.47 KN

HORIZONTAL SURCHARGE Ps 0.00 KN

TOTAL HORIZONTAL PRESSURE 731.47

Page 79: Retaining Wall Design

DISTANCE OF W1 FROM TOE TIP X1 2.50 mtr

DISTANCE OF W2 FROM TOE TIP X2 2.45 mtr

DISTANCE OF Wcf1 FROM TOE TIP Xcf1 3.40 mtr

DISTANCE OF Wcf2 FROM TOE TIP Xcf2 1.53 mtr

DISTANCE OF W3 FROM TOE TIP X3 3.40 mtr

TOTAL MOMENT DUE TO VERT FORCE @ TOE TIP 5340.29 KN-mtr

DIST OF RESULTANT VERT FORCE FROM TOE TIP 3.18 mtr

HORIZONTAL EARTH PRESSURE Ph 731.47 KN

HORIZONTAL SURCHARGE Ps 0.00 KN

TOTAL HORIZONTAL PRESSURE 731.47

VERT HT OF HORT FORCE Y1 ABOVE BASE SLAB 2.85 mtr

VERT HT OF SUR FORCE Y2 ABOVE BASE SLAB 4.28 mtr

TOTAL MOMENT DUE TO HORI FORCE @ WALL BOTTOM 2084.70 KN-mtr

NET MOMENT ABOUT TOE 3255.59 KN-mtr

CALCULATION OF EARTH PRESSURE

Co eff = (base*c/c butress dist/2) FOR p1 8.25

Co eff = (base*c/c butress dist/2) FOR p2 8.25

DIST FROM TIP OF TOE FOR SOIL REACTION P1 1.67

DIST FROM TIP OF TOE FOR SOIL REACTION P2 3.33

NET SOIL REACTION CO EFF 8.25

NET MOMENT DUE TO SOIL REACTION CO EFF 13.75

SOIL PRESSURE P1 236.77

SOIL PRESSURE P2 33.33

SOIL PRESSURE P3 206.78

SOIL PRESSURE P4 210.24

DIST OF RESULTANT VERT FORCE FROM TOE TIP 3.18 mtr

CALCULATION OF EARTH PRESSURE

RESULTANT FORCES R=SQRT(H^2+V^2) 1830.83 KN

DIST OF RESULTANT FORCE FROM TOE TIP X 1.78 m

ECCENTRICITY e 0.72 m

` MAX PRESSURE Pmax (P1) 128.42 KN/m2

MIN PRESSURE Pmin(P2) 75.02 KN/m2

PRESSURE BELOW LEFT SIDE OF STEM WALL P3 94.48 KN/m2

PRESSURE BELOW RIGHT SIDE OF STEM WALL P4 92.23 KN/m2

FOS AGAINST OVERTURNING 2.56

FOS AGAINST SLIDING 1.26

IF FOS<1.5 PROVIDE SHEAR KEY

OR INCREASE WIDTH OF FDN

DESIGN OF SHEAR KEY

INPUT PERMISSIBLE SHEAR STRESS Tc 0.33 N/mm2

THICKNESS OFKEY 1110 mm

DEPTH OF KEY 1.05 m

KEY REINFORCEMENT 1332 mm2

INPUT PROVIDE DIA OF STEEL BAR 10 mm

Page 80: Retaining Wall Design

SPACING OF BARS 50 mm

For Toe Slab For Heel Slab For Stem Wall

Length L= 3.00 3.00 3.00

Height h= 2.30 2.40 8.55

h/L ratio 0.767 0.800 2.850

Constants α1 α2

For Toe Slab Copy Values from Table -0.054 -0.044

For Heel Slab Copy Values from Table -0.053 -0.051

For Stem Wall Copy Values from Table

CRITICAL MOMENTS IN TOE, HEAL AND THE STEM WALL SLABS (IN KN-M/M)

DUE TO W W*L^2

(KN-M) (KN-M/M)

TOE SLAB (MOMENT CAUSING TENSION ON THE BOTTOM FASE IS CONSIDERED AS POSSITIVE)

UDL -128.42 -1155.75

TRIANGLE 53.40 480.57

TOTAL

HEEL SLAB (MOMENT CAUSING TENSION ON THE BOTTOM FASE IS CONSIDERED AS POSSITIVE)

UDL -100.65 -905.86

TRIANGLE 75.02 675.18

TOTAL

VERTICAL WALL SLAB

TRIANGLE 57.03 513.31

DESIGN OF TOE SLAB

EFFECTIVE DEPTH OF TOE d 375 mm

SPAN OF TOE L1 1.85 m

WT OF FOOTING W4 11.25 KN/m

MAX BM AT BASE OF TOE Mt 90.15 KN-m

SHEAR FORCE Vmax 259.23 KN

DESIGN OF TOE SLAB TO RESIST BENDING MOMENT

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 1.0 Mtr

Max BM Mx 90.15 KN-M

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 162 mm

RESULT Adopt Effective Depth d 370 mm

INPUT Use Dia of Slab rft 12 mm

Adopt Cover for Slab 75 mm

Over all Depth of Base Slab D 450 mm

Page 81: Retaining Wall Design

Width of Slab considered for Cal 1000 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 0.66

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

0.66 0.188 697 Sqmm

Min area of Tension Steel Ao=0.85*bd/fy 757.83 Sqmm

Max area of Tensile Steel = 0.04 bD 18000 Sqmm

Provide Area of Tension Steel 758 Sqmm

Area of One Bar 113.14 Sqmm

RESULT Spacing of Main Bars 150 mm

Min Area of Steel 0.12 % 540 Sqmm

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

675 Sqmm

INPUT Use 12 mm Dia bars as distribution Rft

Area of One Bar 113.14 Sqmm

RESULT Spacing of Distribution Bars 170 mm

DESIGN/ CHECK FOR TOE SLAB TO RESIST SHEAR

Grade of Concrete M 25

Effective Depth 370 mm

Over allDepth of Slab 450 mm

Dia of Shear rft 12 mm

Area of One Bar 113.14 Sqmm

Spacing of Bars 150 mm

Max Shear Force wL/2 259.23 KN

Percentage of Tensile Steel 100At/2bd = 0.20

(at the end, alternate bar are bent up)

Design Shear Strength 0.334

Calculated k Value

INPUT For 450 mm thick slab, k=

Permissible Max Shear Stress 0.334

Nominal Shear stress Vu/bd 0.70

Page 82: Retaining Wall Design

Shear Check Un safe

DESIGN OF HEELSLAB

SPAN OF HEEL L2 2.13 M

PRESSURE AT HEEL Wp 98 KN/m2

WT OF SOIL OVER HEEL W5 171 KN/m

WT OF HEEL W6 11 KN/m

MAX BM AT HEEL Mh 73 KN-m

SHEAR FORCE Vmax 223.47 KN

DESIGN OF HEEL SLAB TO RESIST BENDING MOMENT

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 1.0 Mtr

Max BM Mx 73.37 KN-M

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 146 mm

RESULT Adopt Effective Depth d 400 mm

INPUT Use Dia of Slab rft 12 mm

Adopt Cover for Slab 50 mm

Over all Depth of Base Slab D 455 mm

Width of Slab considered for Cal 1000 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 0.46

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

0.46 0.130 520 Sqmm

Min area of Tension Steel Ao=0.85*bd/fy 819.28 Sqmm

Max area of Tensile Steel = 0.04 bD 18200 Sqmm

Provide Area of Tension Steel 819 Sqmm

Area of One Bar 113.14 Sqmm

RESULT Spacing of Main Bars 140 mm

Min Area of Steel 0.12 % 546 Sqmm

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

682.5 Sqmm

INPUT Use 12 mm Dia bars as distribution Rft

Page 83: Retaining Wall Design

Area of One Bar 113.14 Sqmm

RESULT Spacing of Distribution Bars 170 mm

DESIGN/ CHECK FOR HEEL SLAB TO RESIST SHEAR

Grade of Concrete M 25

Effective Depth 400 mm

Over allDepth of Slab 455 mm

Dia of Shear rft 12 mm

Area of One Bar 113.14 Sqmm

Spacing of Bars 140 mm

Max Shear Force wL/2 223.47 KN

Percentage of Tensile Steel 100At/2bd = 0.20

(at the end, alternate bar are bent up)

Design Shear Strength 0.332

Calculated k Value

INPUT For 455 mm thick slab, k=

Permissible Max Shear Stress 0.332

Nominal Shear stress Vu/bd 0.56

Shear Check Un safe

DESIGN OF STEM WALL

SPAN OF WALL L3 8.70 M

MAX BM AT BOTTOM OF WALL Mw 20.53 KN-m

SHEAR FORCE Vmax 731.47 KN

DESIGN OF STEM WALL TO RESIST BENDING MOMENT

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 1.0 Mtr

Max BM Mx 20.53 KN-M

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Stem 77 mm

RESULT Adopt Effective Depth d 600 mm

INPUT Use Dia of Stem rft 12 mm

Adopt Cover for Stem 50 mm

Over all Depth of Stem D 655 mm

Width of Stem considered for Cal 1000 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 0.06

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

0.06 0.016 96 Sqmm

Page 84: Retaining Wall Design

Min area of Tension Steel Ao=0.85*bd/fy 1228.92 Sqmm

Max area of Tensile Steel = 0.04 bD 26200 Sqmm

Provide Area of Tension Steel 1229 Sqmm

Area of One Bar 113.14 Sqmm

RESULT Spacing of Main Bars 90 mm

Min Area of Steel 0.12 % 786 Sqmm

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

982.5 Sqmm

INPUT Use 8 mm Dia bars as distribution Rft

Area of One Bar 50.29 Sqmm

RESULT Spacing of Distribution Bars 50 mm

DESIGN/ CHECK FOR STEM WALL TO RESIST SHEAR

Grade of Concrete M 25

Effective Depth 600 mm

Over all Depth of Stem 655 mm

Dia of Shear rft 12 mm

Area of One Bar 113.14 Sqmm

Spacing of Bars 90 mm

Max Shear Force wL/2 731.47 KN

Percentage of Tensile Steel 100At/2bd = 0.20

(at the end, alternate bar are bent up)

Design Shear Strength 0.334

Calculated k Value

INPUT For 655 mm thick slab, k=

Permissible Max Shear Stress 0.334

Nominal Shear stress Vu/bd 1.22

Shear Check Un safe

DESIGN OF FRONT COUNTER FORT TO RESIST BENDING MOMENT

Length of Front Counter Fort 2.3 Mtr

Earth Pressure at tip of Counter Fort w1 182 KN/Sqm

Earth Pressure at Stem of Counter Fort w3 82.7 KN/Sqm

Ht of Front Counterfort Above Base Slab 1.05 Mtr

Page 85: Retaining Wall Design

C/C dist between Counter Fort 3.30 Mtr

Max BM due to Earth Pressure 1299.67 KN M

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 0.3 Mtr

Max BM Mx 1299.67 N-MM

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 1122 mm

RESULT Adopt Effective Depth d 1130 mm

INPUT Use Dia of Slab rft 25 mm

Adopt Cover for Slab 50 mm

Over all Depth of Base Slab D 1195 mm

Width of Slab considered for Cal 300 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 3.39

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

3.39 1.165 3950 Sqmm

Min area of Tension Steel Ao=0.85*bd/fy 694.34 Sqmm

Max area of Tensile Steel = 0.04 bD 14340 Sqmm

Provide Area of Tension Steel 3950 Sqmm

Area of One Bar 491.07 Sqmm

RESULT No of Main Bars 9 Nos

Min Area of Steel 0.12 % 1434 Sqmm

Check for Min rft OK

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

1792.5 Sqmm

INPUT Use 16 mm Dia bars as distribution Rft

Area of One Bar 201.14 Sqmm

RESULT Spacing of Distribution Bars 110 mm

INPUT Provided Depth of Front Counter Fort 1250 mm 1250

Shear Force at d away from Stem

DESIGN/ CHECK FOR REAR COUNTER FORT WALL TO RESIST SHEAR

Page 86: Retaining Wall Design

SF/HorizThrust 1004.54 KN

Net SF= F-M*tan θ/d' 479.47 KN

Grade of Concrete M 25

Effective Depth 1130 mm

Over allDepth of Slab 1195 mm

Dia of Shear rft 25 mm

Area of One Bar 491.07 Sqmm

No of Bars 9 Nos

Max Shear Force wL/2 479.47 KN

Percentage of Tensile Steel 100At/2bd = 1.30

(at the end, alternate bar are bent up)

Design Shear Strength 0.707

Calculated k Value

INPUT For 1195 mm thick slab, k=

Permissible Max Shear Stress 0.707

Nominal Shear stress Vu/bd 0.42

Shear Check Safe

Provide 10 mm dia 2 legged stirrup at 200 C/C to connect with stem

DESIGN OF REAR COUNTER FORT TO RESIST BENDING MOMENT

Height of Front Counter Fort 9.00 Mtr

Base Widh of Front Counter Fort 2.30 Mtr

Inclination of Counter Fort θ= 0.2502 Radian 14.34

Ht of Earth Filling Above GL 7.5 Mtr

Max BM = wh^3*(1-sinφ)/(1+sinφ)*3/6 1406.27 KN m

SF/HorizThrust wh^2*(1-sinφ)/(1+sinφ)*3/2 562.51 KN

Grade of Concrete M 25

Grade of Steel Fe 415

Base width 0.3 Mtr

Max BM Mx 1406.27 N-MM

BM = (Const*fck) bd^2 3.444 bd^2

Calculated Eff Depth of Slab 1167 mm

RESULT Adopt Effective Depth d 1170 mm

INPUT Use Dia of Slab rft 25 mm

Adopt Cover for Slab 50 mm

Over all Depth of Base Slab D 1235 mm

Width of Slab considered for Cal 300 mm

Grade of Concrete M 25

Grade of Steel Fe 415

a= 0.87 *(fy^2/fck) 5993.43

b= -0.87 fy -361.05

c= m= Mu/(bd^2) 3.42

Page 87: Retaining Wall Design

m= Mu/(bd^2) p %= (-b- sqrt(b^2-4ac))/2a At

3.42 1.179 4140 Sqmm

Sqmm

Provide Area of Tension Steel 4140 Sqmm

Area of One Bar 491.07 Sqmm

RESULT No of Main Bars 9 Nos

Min Area of Steel 0.12 % 1482 Sqmm

Temp rft 0.15 % of gross area will be provided in the longitudinal direction

1852.5 Sqmm

INPUT Use 16 mm Dia bars as distribution Rft

Area of One Bar 201.14 Sqmm

RESULT Spacing of Distribution Bars 110 mm

DESIGN/ CHECK FOR REAR COUNTER FORT WALL TO RESIST SHEAR

SF/HorizThrust wh^2*(1-sinφ)/(1+sinφ)*3/2 562.51 KN

Net SF= F-M*tan θ/d' 264.91 KN

Grade of Concrete M 25

Effective Depth 1170 mm

Over allDepth of Slab 1235 mm

Dia of Shear rft 25 mm

Area of One Bar 491.07 Sqmm

No of Bars 9 Nos

Max Shear Force wL/2 264.91 KN

Percentage of Tensile Steel 100At/2bd = 1.26

(at the end, alternate bar are bent up)

Design Shear Strength 0.698

Calculated k Value

INPUT For 1235 mm thick slab, k=

Permissible Max Shear Stress 0.698

Nominal Shear stress Vu/bd 0.23

Shear Check Safe

Provide 10 mm dia 2 legged stirrup at 200 C/C to connect with stem

Page 88: Retaining Wall Design
Page 89: Retaining Wall Design
Page 90: Retaining Wall Design

COUNTERFORT RCC RETAINING WALL

(Ex 14.5 Dhayaratnam, Ex 12.4 Vazirani and Ratwani)

Soil Ws KN/Sqm θ Rg θ Mean µ β Fr bet soil & wall

Sand 17-20 25-35 30 0.55 29

Medium Clay 16-18 14-28 21 0.4 22

Soft Clay 15-17 4-16 10 0.33 18

0.3 T= H/10

B1=(B-Tc)/2

Ka= Cos C((Cos C- Sqrt(Cos C^2-Cos θ^2))/(Cos C+ Sqrt(Cos C^2-Cos θ^2)))

h=SBC/Ws*(1-sin θ /1+sin θ )^2

1.20 DEPTH=H/3 AND NOT LESS THAN MIN DEPTH/ 1.20Mtr DEPTH OF FDN

Ht=H+DEPTH

0.487 α=0.36*(SQRT(1+(3.4*SBC)/(Ws*Ht))-1) TO 0.45*(SQRT(1+(3*SBC)/(Ws*Ht))-1α=HEEL WIDTH/BASE WIDTH

B=0.5*Ht*SQRT(Ka/(α(1-0.55*α))

3.00 GENERALLY B=Ht/3 AND NOT LESS THAN B(MIN)

2.40 B1=(B-Tc)/2, Alpha*B,F32)

GIVE VALUE=0 IF THERE IS NO SURCHARGE

T=Ht/20 to H/30

200 BASE SLAB THICKNESS

T=Ht/30 to H/40

250 WALL THICKNESS AT BOT

125 Th at Top T2 = T1/2 WALL THICKNESS AT TOP

W1=B*D*Lc*25

W2=(T1+T2)/2*(H-D)*Lc*25

Wcf1= Hcf*Tc*B1*25/2

Wcf2= Hcf*Tc*B2*25/2

W3=ALPHA*B*(Ht-D)*Ws+Ps*ALPHA*

3.30 W=W1+W2+W3

P1=Ka*Ws*Ht*Ht/2*L

Ps=ps*Ht*L

Th=Ph+Ps

Page 91: Retaining Wall Design

X1=B/2

X2=Bcf2+T1/2

Xcf1=B2+T1+B1/3

Xcf2=B2*2/3

X3=B2+T1+B1/3

Mh=(W1*X1+W2*X2+W3*X3+Wcf1*XCF1+Wcf2*Xcf2+Ph*Y1+Ps*Y2)

=M/W

P1=Ka*Ws*Ht*Ht/2*L

Ps=ps*Ht*L

Th=Ph+Ps

Y1=Ht/3

Y2=Ht/2

Mv=P1*Y1+P2*Y2

M=Mh-Mv

R=SQRT(V*V+H*H)

X=(W1*X1+W2*X2+W3*X3+Wcf1*XCF1+Wcf2*Xcf2+Ph*Y1+Ps*Y2)/R

e=X-B/2

Pmax=W/B(1+6*e/B) CHECK Pmax < SBC

Pmin=W/B(1-6*e/B) CHECK Pmin>O

FOS=(W1*X1+W2*X2+W3*X3)/(P*Y1+Ps*Y2) CHECK FOS>1.5

FOS=u*W/(Ph+Ps) CHECK FOS>1.5

Max Shear Stress

Grade of Concrete M 25

SHEAR KEY THICK Max SS N/Sqmm 3.1 THICKNESS OF KEY=(P+Ps)*1.5/Tc

fck 25

Design Shear Strength

100 As/bd β SS N/Sqmm

Page 92: Retaining Wall Design

0.20 14.51 0.331

α3 α4 β1 β2 β3 β4

0.021 -0.078 -0.026 -0.017 0.008 0.000

0.025 -0.081 -0.020 -0.021 0.010 0.000

-0.029 -0.040 0.021 0.000

CRITICAL MOMENTS IN TOE, HEAL AND THE STEM WALL SLABS (IN KN-M/M)

AT BASE

α1 or β1 M1 α2 or β2 M2 α3 or β3 M3 α4 or β4 M4

TOE SLAB (MOMENT CAUSING TENSION ON THE BOTTOM FASE IS CONSIDERED AS POSSITIVE)

-0.054 62.41 -0.044 50.85 0.021 -24.27 -0.078 90.15

-0.026 -12.49 -0.017 -8.17 0.008 3.84 0.000 0.00

49.92 42.68 -20.43 90.15

HEEL SLAB (MOMENT CAUSING TENSION ON THE BOTTOM FASE IS CONSIDERED AS POSSITIVE)

-0.053 48.01 -0.051 46.20 0.025 -22.65 -0.081 73.37

-0.020 -13.50 -0.021 -14.18 0.010 6.75 0.000 0.00

34.51 32.02 -15.89 73.37

-0.029 -14.89 -0.040 -20.53 0.021 10.78 0.000 0.00

14.89 20.53 10.78 0.00

d=D-COVER

L1=B-B2-T

W4=D*25

Mt=(W4+Pmax)*L1*L1/2

V=(Pmax*(L1-d))*1.5

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

369 415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

MIDDLE HT TOPMIDDLE POINT

Page 93: Retaining Wall Design

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

12 mm Dia

12 mm Dia

mm Dia bars as distribution Rft

12 mm Dia

12 mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

0.20 14.24 0.334

%

N/ Sqmm

Calculated k Value 1.00 Value of K

mm thick slab, k= 1.00 Ds >300 275 250 225 200 175

k 1.00 1.05 1.10 1.15 1.20 1.25

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

N/ Sqmm

Steel

Page 94: Retaining Wall Design

L2=ALPHA*B

Wp=Pmin+(Pmax-Pmin)*alpha

W5=Ws*(Ht-D)

W6=25*D

Mh=Wp+W5+W6)*L2*L2

V=(Pheel*(L2-d))*1.5

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

394 415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

12 mm Dia

12 mm Dia

mm Dia bars as distribution Rft

Steel

Page 95: Retaining Wall Design

12 mm Dia

12 mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

0.20 14.37 0.332

%

N/ Sqmm

Calculated k Value 1.00 Value of K

mm thick slab, k= 1.00 Ds >300 275 250 225 200 175

k 1.00 1.05 1.10 1.15 1.20 1.25

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

N/ Sqmm

L3=Ht-D

Mw=KaWs L3*L3+PsL3*L3/2

V=(Pheel*(L2-d))*1.5

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

600 415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

Steel

Page 96: Retaining Wall Design

12 mm Dia

12 mm Dia

mm Dia bars as distribution Rft

8 mm Dia

8 mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

0.20 14.17 0.334

%

N/ Sqmm

Calculated k Value 1.00 Value of K

mm thick slab, k= 1.00 Ds >300 275 250 225 200 175

k 1.00 1.05 1.10 1.15 1.20 1.25

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

N/ Sqmm

Page 97: Retaining Wall Design

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

25 mm Dia

25 mm Dia

mm Dia bars as distribution Rft

16 mm Dia

16 mm Dia

Steel

Page 98: Retaining Wall Design

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

1.30 2.23 0.707

%

N/ Sqmm

Calculated k Value 1.00 Value of K

mm thick slab, k= 1.00 Ds >300 275 250 225 200 175

k 1.00 1.05 1.10 1.15 1.20 1.25

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

N/ Sqmm

Degree

Max Depth of Nutral Axis

fy Xm=0.0035/(.0055+0.87*fy/Es), Es= 200000 N/Sqmm

250 0.53 d

0 415 0.48 d

500 0.46 d

550 0.44 d

Limiting Moment of resistance MR = Const * b*d^2 N mm

Const= 0.36*fck*Xm(1-0.42*Xm)

Concrete M Fe 250 Fe 415 Fe 500 Fe 550

15 2.229 2.067 1.991 1.949

20 2.972 2.755 2.655 2.598

25 3.715 3.444 3.318 3.248

30 4.458 4.133 3.982 3.897

35 5.201 4.822 4.645 4.547

Steel

Page 99: Retaining Wall Design

25 mm Dia

25 mm Dia

mm Dia bars as distribution Rft

16 mm Dia

16 mm Dia

Max Shear Stress

Grade of Concrete M 25

Max SS N/Sqmm 3.1

fck 25

Design Shear Strength

100 As bd β SS N/Sqmm

1.26 2.31 0.698

%

N/ Sqmm

Calculated k Value 1.00 Value of K

mm thick slab, k= 1.00 Ds >300 275 250 225 200 175

k 1.00 1.05 1.10 1.15 1.20 1.25

N/ Sqmm

* Shear rft be provided in a slab deeper than 200 mm

N/ Sqmm

Page 100: Retaining Wall Design
Page 101: Retaining Wall Design
Page 102: Retaining Wall Design
Page 103: Retaining Wall Design

THICKNESS OF KEY=(P+Ps)*1.5/Tc

Y YFREE EDGE

α4 4

FREE EDGE

β4 4

Page 104: Retaining Wall Design

X

BM COEFFICIENT OF A PLATE 3 EDGE FIXED AND ONE EDGE FREE

UDL Y=0 Y=h/2 Y=h/2 Y=h TDL Y=0 Y=h/2 Y=h/2

X=0 X=±L/2 X=0 X=±L/2 X=0 X=±L/2 X=0

h/L α1 α2 α3 α4 h/L β1 β2 β3

0.600 -0.055 -0.036 0.017 -0.074 0.600 -0.024 -0.013 0.006

0.700 -0.054 -0.044 0.021 -0.078 0.700 -0.026 -0.017 0.008

0.800 -0.053 -0.051 0.025 -0.081 0.800 -0.020 -0.021 0.010

0.900 -0.052 -0.056 0.029 -0.083 0.900 -0.029 -0.024 0.012

1.000 -0.051 -0.061 0.032 -0.083 1.000 -0.030 -0.027 0.013

1.250 -0.047 -0.071 0.037 -0.083 1.250 -0.031 -0.033 0.017

1.500 -0.042 -0.075 0.040 -0.083 1.500 -0.029 -0.034 0.019

2.000 -0.040 -0.083 0.041 -0.083 2.000 -0.029 -0.040 0.021

L

h

α1

α2 α3

α4

1 2

3

4

L

h

β1

β2 β3

β4

1 2

3

4

w Load

Page 105: Retaining Wall Design

<151

1.30

Page 106: Retaining Wall Design
Page 107: Retaining Wall Design

<151

1.30

Page 108: Retaining Wall Design

<151

1.30

Page 109: Retaining Wall Design
Page 110: Retaining Wall Design

<151

1.30

Page 111: Retaining Wall Design

<151

1.30

Page 112: Retaining Wall Design
Page 113: Retaining Wall Design
Page 114: Retaining Wall Design
Page 115: Retaining Wall Design
Page 116: Retaining Wall Design

X

Y=h

X=±L/2

β4

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

w Load

Page 117: Retaining Wall Design

INPUT DATAS

INPUT GRADE OF CONCRETE f ck 30 N/mm2

INPUT GRADE OF STEEL f y 415 N/mm2

INPUT ANGLE OF REPOSE OF SOIL 0 36 DEG

INPUT SUBMERGED DENSITY OF SOIL Wsub 18 Kn/m3

INPUT BULK DENSITY OF SOIL Ws 18 KN/m3

INPUT SAFE BEARING CAPACITY SBC 150 KN/m2

INPUT ANGLE OF SURCHARGE OF FILL C 0 DEG

INPUT COEFFT OF FRICTION u 0.5

COS C 1

COS 0 0.80920418

INPUT COEFFT Of ACTIVE PRESSURE Ka 0.260

INPUT HEIGHT OF FILLING H 5 mtr

INPUT HT OF WATER TABLE FROM TOP OF FILL H1 1 mtr

INPUT HT OFSUBMERGED EARTH H2 5.25

MIN DEPTH OF FDN h 0.56 mtr

INPUT PROVIDE DEPTH OF FDN 1.25 mtr DEPTH=H/3 AND NOT LESS THAN MIN DEPTH

TOTAL HT OF WALL Ht 6.25 mtr

RATIO ALPHA AS PER FORMULAE 0.370

BASE WIDTH B(MIN) 2.93 mtr

INPUT PROVIDE BASE WIDTH B 5.00 mtr GENERALLY B=Ht/3 AND NOT LESS THAN B(MIN)

INPUT SURCHARGE ps 0 KN/m

BASE SLAB THICK D(MIN) 521 mm

INPUT PROVIDE BASE SLAB THICK D 550 mm

WALL THICK T(MIN) 625 mm

INPUT PROVIDE WALL THICK T 650 mm

CHECK FOR SBC

WT OF BASE SLAB W1 68.75 KN/m

WT OF STEM WALL W2 92.63 KN/m

WT OF SOIL OVER HEEL 303.25 KN/m

TOTAL STABILISING FORCE W 464.62 KN/m

SAT SOIL PRESSURE P1 4.68 KN/m

SUB SOIL PRESSURE P2 224.20 KN/m

VERTICAL COMP OF EARTH PRESSURE 0.00 KN/m THIS IS STABLISING COMPONENT AND IS GENERALLY NEGLECTED

HORIZONTAL EARTH PRESSURE P 228.88 KN/m

SURCHARGE Ps 0.00 KN/m

DISTANCE OF W1 FROM HEEL X1 2.50 mtr

DISTANCE OF W2 FROM HEEL X2 2.17 mtr

DISTANCE OF W3 FROM HEEL X3 0.92 mtr

HT OF HORT FORCE P1 FROM HEEL 5.58 mtr

HT OF HORT FORCE P2 FROM HEEL 1.85 mtr

HT OFSUR FORCE Y2 FROM HEEL 3.13 mtr

DIST OF VERT REACTION FROM HEEL 1.41 mtr

CALCULATION OF PRESSURE

REACTION OF FORCES 517.94 KN

DIST OF REACTION FROM HEEL X 2.11 mtr

ECCENTRICITY e -0.39 m

MAX PRESSURE Pmax 49.59 KN/m2

RCC RETAINING WALL(CANTILEVERTYPE) MAX 6.0 MTR HEIGHT

(WHERE WATER TABLE IS ABOVE BASE OF FOOTING)

Page 118: Retaining Wall Design

MIN PRESSURE Pmin 136.26 KN/m2

FOS AGAINST OVERTURNING 3.79

FOS AGAINST SLIDING 1.02

IF FOS<1.5 PROVIDE SHEAR KEY

0R INCREASE WIDTH OF FDN

DESIGN OF SHEAR KEY

INPUT PERMISSIBLE SHEAR STRESS Tc 0.29 N/mm2

THICKNESS OFKEY 1184 mm

DEPTH OF KEY 1.25 m

INPUT PROVIDE DIA OF STEEL BAR 10 mm

SPACING OF BARS 50 mm

KEY REINFORCEMENT 1421 mm2

DESIGN OF BASE SLAB

DESIGN OF TOE SLAB

EFFECTIVE DEPTH OF TOE d 475 mm

SPAN 0F TOE L1 2.50 m

WT OF FOOTING W4 13.75 KN/m

MAX BM AT BASE OF TOE Mt 168.11 KN-m

DEPTH OF SLAB REQD d1 202 mm

PROVIDE DEPTH 475 mm

Mu/fck*bd*d 0.745

INPUT PERCENTAGE OF STEEL p% 0.4

AREA OF MAIN RFT Ast 1900 mm2

INPUT PROVIDE DIA OF BAR 16 mm

SPACING OF BARS 106 mm

AREA OF DIST RFT Ast2 570 mm2

INPUT PROVIDE DIA OF BAR 12 mm

SPACING OF BARS 198 mm

CHECK FOR SHEAR STRESS

SHEAR FORCE Vmax 108.91 KN

NOMINA SHEAR STRESS Tv 0.23 N/mm2

DESIGN OF HEELSLAB

SPAN OF HEEL L2 1.85 M

PRESSURE AT HEEL Wp 104 KN/m2

WT OF SOIL OVER HEEL W5 303 KN/m

WT OF HEEL W6 14 KN/m

MAX BM AT HEEL Mh 364 KN-m

DEPTH REQD d3 296 mm

PROVIDE DEPTH 475 mm

Mh/b*d*d 1.61

INPUT PERCENTAGE OF STEEL p% 0.6

AREA OF MAIN RFT Ast 2850 mm2

INPUT PROVIDE DIA OF BAR 20 mm2

SPACING OF BARS 110 mm

AREA OF DIST RFT Ast2 570 mm2

INPUT PROVIDE DIA OF BAR 12 mm

SPACING OF BARS 198 mm

CHECK FOR SHEAR STRESS

Page 119: Retaining Wall Design

SHEAR FORCE Vmax 438.57 KN

NOMINA SHEAR STRESS Tv 0.92 N/mm2

DESIGN OF STEM WALL

SPAN OF WALL L3 5.60 M

MAX BM AT BOTTOM OF WALL Mw 652.30 KN-mDEPTH REQD d3 397 mm

INPUT PROVIDE DEPTH 600.00 mm

Mh/b*d*d 1.81

PERCENTAGE OF STEEL p% 0.3

AREA OF MAIN RFT Ast 1800 mm2

INPUT PROVIDE DIA OF BAR 16 mm

SPACING OF BARS 112 mm

AREA OF DIST RFT Ast2 720 mm2

PROVIDE DIA OF BAR 12 mm

SPACING OF BARS 157 mm

CHECK FOR SHEAR STRESS

SHEAR FORCE Vmax 228.88 KN

INPUT NOMINAL SHEAR STRESS Tv 0.38 N/mm2

Page 120: Retaining Wall Design
Page 121: Retaining Wall Design
Page 122: Retaining Wall Design
Page 123: Retaining Wall Design

t=

0

H=

0

Page 124: Retaining Wall Design

# @

mm c/c

0

ALL DIMENSIONS ARE IN MILLIMETRES

Page 125: Retaining Wall Design
Page 126: Retaining Wall Design
Page 127: Retaining Wall Design
Page 128: Retaining Wall Design
Page 129: Retaining Wall Design
Page 130: Retaining Wall Design

RESULT VALUES

Ka=COS C-(COS c-SQRT(COS c^2-COS o^2)/COS c+SQRT(COS c^2-COS o^2)

H1

H2=Ht-H1

h=SBC*Ka*Ka/Ws

DEPTH=H/3 AND NOT LESS THAN MIN DEPTH DEPTH OF FDN

Ht=H+DEPTH

ALPHA=HEEL WIDTH/BASE WIDTHWIDTH=0.36*(SQRT(1+(3.4*SBC)/(Ws*Ht))-1)

B=0.5*Ht*SQRT(Ka/(ALPHA(1-0.55*ALPHA))

GENERALLY B=Ht/3 AND NOT LESS THAN B(MIN) BASE WIDTH

GIVE VALUE=0 IF NO SURCHARGE IS THERE

D=Ht/12

BASE SLAB THICKNESS

T=Ht/10

WALL THICKNESS AT BOT

WALL THICKNESS AT TOP

W1=B*D*25

W2=T*(H-D)*Ws)*25

W3=ALPHA*B*(Ht-D)*Ws+Ps*ALPHA*

W=W1+W2+W3

P1=Ka*Ws*H1^2/2

THIS IS STABLISING COMPONENT AND IS GENERALLY NEGLECTED

P=Ka*Ws*Ht*Ht/2

Ps=ps*Ht

X1=B/2

X2=B-ALPHA*B-T/2

X3=B-ALPHA*B/2

Y1=Ht/3

Y2=Ht/2

R=V*V+H*H

X=W1*X1+W2*X2+W3*X3-P*Y1+Ps*Y2/R H=

e=X-B/2 5000

Pmax=W/B(1+6*e/B) CHECK Pmax < SBC

RCC RETAINING WALL(CANTILEVERTYPE) MAX 6.0 MTR HEIGHT

(WHERE WATER TABLE IS ABOVE BASE OF FOOTING)

Page 131: Retaining Wall Design

Pmin=W/B(1-6*e/B) CHECK Pmin>O

FOS=(W1*X1+W2*X2+W3*X3)/(P*Y1+Ps*Y2) CHECK FOS>1.5

FOS=u*W/(P+Ps) CHECK FOS>1.5

EXIST. GL

FROM IS 456 TABLE FOR M25= 0.29/MM2 FOR M30=0.29N/MM2

THICKNESS OF KEY=(P+Ps)*1.5/Tc SHEAR KEY THICK

h=

1250

D=

550

d=D-COVER

L1=B-B2-T 12 # @

W4=D*25 190 mm c/c

Mt=(W4+Pmax)*L1*L1/2

d1=SQRT(Mt/0.138*fck*1000)

d=D-COVER

p% FROM SP:36

Ast=p%*b*d*/100 2510

USE BARS 10,12,16,20 DIA TOE REFT

SPACING =1000/(Ast/.785*dia*dia)

USE 8,10.12MM dia TOE REFT ALL DIMENSIONS ARE IN MILLIMETRES

V=(Pmax*(L1-d))*1.5

Tv=V/b*d CHECK Tv<Tc

L2=ALPHA*B

Wp=Pmin+(Pmax-Pmin)*alpha

W5=Ws*(Ht-D)

W6=25*D

Mh=Wp+W5+W6)*L2*L2

p% FROM SP:36

Ast=p%*b*d*/100

USE BARS 10,12,16,20 DIA HEEL REFT

SPACING =1000/(Ast/.785*dia*dia)

USE 8,10.12MM dia HEEL REFT

Page 132: Retaining Wall Design

V=(Pheel*(L2-d))*1.5

Tv=V/b*d CHECK Tv<Tc

L3=Ht-D

Mw=KaWs L3*L3+PsL3*L3/2

p% FROM SP:36

Ast=p%*b*d*/100

USE BARS 10,12,16,20 DIA WALL REFT

SPACING =1000/(Ast/.785*dia*dia)

USE 8,10.12MM dia WALL REFT

V=(Pheel*(L2-d))*1.5

Tv=V/b*d

WALL REFT

Page 133: Retaining Wall Design
Page 134: Retaining Wall Design

25 30

3.1 3.5

200 175 <151

1.20 1.25 1.30

Page 135: Retaining Wall Design
Page 136: Retaining Wall Design

t=

0

H=

0

Page 137: Retaining Wall Design

# @

mm c/c

0

ALL DIMENSIONS ARE IN MILLIMETRES

Page 138: Retaining Wall Design
Page 139: Retaining Wall Design
Page 140: Retaining Wall Design
Page 141: Retaining Wall Design
Page 142: Retaining Wall Design
Page 143: Retaining Wall Design

SURCHARGE

MADE UP GL

t=

325 ANGLE 0F SURCHARGE C

16 # @

220 mm c/c

EARTH FILLING SIDE

12 # @

310 mm c/c

Page 144: Retaining Wall Design

12 # @

310 mm c/c

16 # @

2850 220 mm c/c

12 # @

150 mm c/c

20 # @

110 mm c/c

704

16 # @

100 mm c/c

1.25 10 #@50 mm c/c

1180

T=

650 1840

B= 5000

ALL DIMENSIONS ARE IN MILLIMETRES

Page 145: Retaining Wall Design
Page 146: Retaining Wall Design
Page 147: Retaining Wall Design

35 40

3.7 4.0

Page 148: Retaining Wall Design
Page 149: Retaining Wall Design

SURCHARGE

MADE UP GL

t=

0 ANGLE 0F SURCHARGE C

0

0

EARTH FILLING SIDE

H=

0 0

0

Page 150: Retaining Wall Design

0

0

0

0 0

0

0

0

# @

mm c/c

0 0

0

0

T=

0 0 0

B= 0

ALL DIMENSIONS ARE IN MILLIMETRES

Page 151: Retaining Wall Design
Page 152: Retaining Wall Design
Page 153: Retaining Wall Design

25 30 35

3.1 3.5 3.7

200 175 <151

1.20 1.25 1.30

Page 154: Retaining Wall Design
Page 155: Retaining Wall Design
Page 156: Retaining Wall Design
Page 157: Retaining Wall Design
Page 158: Retaining Wall Design
Page 159: Retaining Wall Design
Page 160: Retaining Wall Design
Page 161: Retaining Wall Design
Page 162: Retaining Wall Design

SURCHARGE

MADE UP GL

ANGLE 0F SURCHARGE C

# @

mm c/c

EARTH FILLING SIDE

# @

mm c/c

Page 163: Retaining Wall Design

# @

mm c/c

# @

mm c/c

# @

mm c/c

0 # @ # @

0 mm c/c mm c/c

0 # @ # @

0 mm c/c mm c/c

#@mm c/c

Page 164: Retaining Wall Design
Page 165: Retaining Wall Design
Page 166: Retaining Wall Design

40

4.0

Page 167: Retaining Wall Design

INPUT DATAS

DENSITY OF MASONRY Ww 22 KN/m3

PERMISSIBLE COMPRESSIVE STRESS 0.3 N/mm2

INPUT ANGLE OF REPOSE OF SOIL Ø 33 DEG

BULK DENSITY OF SOIL Ws 18 KN/m2

INPUT SAFE BEARING CAPACITY SBC 150 KN/m2

INPUT ANGLE OF SURCHARGE OF FILL C 0 DEG

COEFFT OF FRICTION u 0.45

COS C 1

COS 0 0.839

COEFFT Of ACTIVE PRESSURE Ka 0.295

INPUT HEIGHT OF FILLING H 4.5 mtr

MIN DEPTH OF FDN h 0.73 mtr h=SBC*Ka*Ka/Ws

INPUT PROVIDE DEPTH OF FDN 1.00 mtr

TOTAL HT OF WALL Ht 5.50 mtr

INPUT TOP WIDTH b 0.60 mtr Min b=0.6 mtr

MAX TOE PRSSURE P 53.76 KN/m2

CHECK P/H (CPH) 1195 PRESSURE/HEIGHT

DENSITY RATIO OF WALL/SOIL (DR) 1.22

INPUT BASE WIDTH/HEIGHT RATIO K 0.53 SELECT B/H RATIO FROM TABLE BASED ON CPH & DR

BASE WIDTH OF WALL 2.385 mtr

THETHA 11

0.194 0.191

0.195

MASONRY RETAINING WALL(GRAVITY TYPE)

(WHERE WATER TABLE IS BELOW BASE OF FOOTING)

Page 168: Retaining Wall Design

Type-I Type-II Type-III

K=1.0 Commonly Used

20° 0.68h 0.65h 0.73h

27° 0.57h 0.55h 0.62h

33° 0.48h 0.47h 0.54h

37° 0.46h 0.45h 0.50h

P 600h 800h 1000h

K=1.25

20° 0.61h 0.62h 0.73h

27° 0.51h 0.52h 0.62h

33° 0.43h 0.44h 0.53h

37° 0.41h 0.42h 0.50h

750h 950h 1100h

0.54h 0.60h 0.73h

SELECT B/H RATIO FROM TABLE BASED ON CPH & DR 0.46h 0.50h 0.62h

0.39h 0.42h 0.53h

0.37h 0.40h 0.50h

950h 1100h 1300h

20°

27°

33°

37°

Base width BAngle of repose

P

P

K=1.50