Remote Sensing - MIT OpenCourseWare ... Remote Sensing D1 Remote sensing is a quasi-linear...
date post
31-Dec-2020Category
Documents
view
3download
0
Embed Size (px)
Transcript of Remote Sensing - MIT OpenCourseWare ... Remote Sensing D1 Remote sensing is a quasi-linear...
Remote Sensing
D1
Remote sensing is a quasi-linear estimation problem
Equation of radiative transfer:
o o
L
B B (z)
0
) T e T(z) (z)e −τ−τ° = + α∫
temperature profile
nepers m-1L
z
(z) = (z) ∆
τ α∫
∆ τ τo )
L
0
T(z),α(z)
z ° B )
oB T
τ(z)
z
Lec22.5-1 3/27/01
T ( K dz
dz
= (0
T ( K
Radiation from Sky-Illuminated Reflective Surfaces
° = B )
L
z TB TS
TG 0
R = 1 - ε
2
2− α−τ ∫+ α∫ z
o 0 L
(z)
0
Re T(z) (
reflectivity
emissivity (specular surface)
4
− α∫
−τ
+ α
≅ α τ⎡ ⎤⎣ ⎦
∫
∫
L z
L (z)
0
L (z)
o 0
) (z)e
T(z) (z)e dz for 1 4
+1
1
− τo2 s
sky temperature
3
3
−τ+ε +o GT e
ground temperature
D2 Lec22.5-2 3/27/01
T ( K
dz z)e dz
>>
dz T(z dz
RT e
terms
4
Temperature Weighting Function W(z,f,T)
( )≅ + ∫ L
B o 0
) T T(z)W (z)o
Terms: , ,
D3
↔B ) T(z)�Note: we have ~linear relation:
(not Fourier)
( ) ( )′≅ + −∫ L
B o o o 0
T (f ) T ) ) )
( ) ∂ = ∂ o
B o
)
T(z) )Incremental weighting function:
Alternatively,
Lec22.5-3 3/27/01
T (f z,f,T dz τ >> For 1:
T (f
T(z T (z W ' z,f,T (z dz
T (z W ' z,f,T T(z
1 2 3 4
Atmospheric Temperature T(z) Retrievals from Space
D4
α(ω) (single P)
f
∆ω ∝
∝ 2l l
αo
ωo α ≠o f(P)�
0
altitudes where intrinsic & doppler broadening dominate
z
α(z)
W(z,f) ωo ± ∆
ω ≅ ωo pressure dominates ∆ω
−τ≅ α τ⎡ ⎤⎣ ⎦∫ L
(z) B o
0
T T(z) (z)e 1
ωo ± 2∆ Lec22.5-4 3/27/01
pressure P
area # mo ecu es m
Therefore for P-broadening trace constituents
>> dz for
Atmospheric Temperature T(z) Retrievals from Space z
0 α(z)
W(z,f) ωo ± ∆
ω ≅ ωo
altitudes where intrinsic & doppler broadening dominate
pressure dominates ∆ω
−τ≅ ⎡ ⎤⎣ ⎦∫ L
(z) B o
0
T ) )e 1
W(f,z)
τ ≅ 1
z
ωo ω f
α(ω) increasing P∆ω
D5
ωo ± 2∆
scale height
Lec22.5-5 3/27/01
τ >> T(z d(z dz for
Atmospheric Temperature T(z) Retrievals from Below L
0 α(z)
W(f,z)
ωo ωo ± ∆
ωo
− α∫= α ω L 0 (z)
oW( ) (z)e i l i
(1/α) >> λ:
0
z
L
transparency, frequency dependentIf α(z) ≅
W(f,z) D6 Lec22.5-6 3/27/01
dz f, z ~decay ng exponentia s, rate s fastest for
Temperature profile retrievals in semi-transparent solids or liquids where
constant:
Atmospheric Composition Profiles
D7
[ ]− α∫ ρ α ′≅ ρ • = ρ ρ ⎡ ⎤ ⎢ ⎥⎣ ⎦∫ ∫
L z
o
L L (z)
B B o 0 0
(z)T (z) T( T (z) ( ( ) (z)
W(z,f) if viewed from space
Because α(z) and W(z,f) are strong functions of the unknown ρ(z), this retrieval problem is quite non-linear and can be singular (e.g. if T(z) = constant). In this case, good statistics can be helpful. Incremental weighting functions defined relative to a nearly normal ρ(z) can help linearize the problem.
Lec22.5-7 3/27/01
+ ρ −dz z)e dz z) W z, f dz
Optimum Linear Estimates (Linear Regression)
=ˆParameter vector estimate
“determination matrix” data vector
[ ]( )∆ 1 Nd =
( ) ( )− −⎡ ⎤⎣ ⎦ tˆ ˆi p p p p
( ) ( ){ ( )( )
∂ − − = = ∂
∂= − − = − ∂
⎡ ⎤ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦
t
ij
tt t jj j i
ij
ˆ ˆE p p p p 0 D
E p Dd p D
THi
[ ] [ ]
∆
=
= =⎡ ⎤⎣ ⎦
d
i j i j
t tt t t d
= C
; �
F1 Lec22.5-8 3/27/01
p Dd 1,d ,..., d
Choose D to min mize E
Derive D :
d D E 2d D d 2d p
row of D
⎡ ⎤ ⎡ ⎤ ⎣ ⎦ ⎣ ⎦
Therefore D E dd E p d
DE dd E pd C D E dp
Optimum Linear Estimates (Linear Regression)
[ ] [ ]
∆
=
= =⎡ ⎤⎣ ⎦
d
i j i j
t tt t t d
= C
; �
F2
1t t dˆi i l C
− ⎡ ⎤= = ⎣ ⎦
Lec22.5-9 3/27/01
⎡ ⎤ ⎡ ⎤ ⎣ ⎦ ⎣ ⎦
Therefore D E dd E p d
DE dd E pd C D E dp
The l near regress on so ution is p Dd where D E dp ⎡ ⎤ ⎣ ⎦
is Least-Square-Error Optimum if:D 1) Jointly Gaussian process (physics + instrument):
( ) ( )
( ) ( )−⎡ ⎤− ⎢ ⎥⎣ ⎦= π Λ
11 r m r m2 r N 2
1p r e 2
( )( )∆ ⎡ ⎤Λ − −⎣ ⎦ t t= E r m r m ∆
=⎡ ⎤⎣ ⎦ 1 2 Nm =
2) Problem is linear:
= + + odata d n d
parameter vector noise (JGRVZM)
F3 Lec22.5-10 3/27/01
− Λ −
1 2
E r , where r r ,r ,...,r
Mr
Examples of Linear Regression
0 d
D11
p̂
slope = D12
[ ]− = ⎡ ⎤ ⎢ ⎥⎣ ⎦
11 12ˆ D D 1
d
F4
Equivalently:
( )
[ ]( ) = + −12p̂ p D d d
E
slope = D12
p̂
d1
regression plane
D11
note change in slope
d2
slope = D13
Lec22.5-11 3/27/01
1 D : p
• ≡ •
Regression Information
G1
but which is correlated with properties the instrument does see; i
uncorrelated with visible information); it is lost.
Lec22.5-12 3/27/01
1) The instrument alone (via weighting functions)
2) “Uncovered information (to which the instrument is blind,
D retr eves this too.)
3) “Hidden information (invisible in instrument and
Nature of Instrument-Provided Information
Assume linear physics: =
[ ] [ ]
1 2 N
1 2 M
th i
d T le
W ix
W i
=
=
=
=
Where
( )
N ii
i 1 ˆ i l i i =
= =
= =
∑
Claim:
G2 Lec22.5-13 3/27/01
d WT
data vector 1,d ,d ,...,d temperature profi T ,T ,...,T
weighting function matr
row of W
If T a W and noise n 0,
then T Dd T, perfect retr eva f W not s ngular
Proof for Continuous Variables
G3
( )
N ii
i 1 ˆ i l i i =
= =
= =
∑
Claim:
1
2
3
) = b (h)
W (h) = b (h) b (h)
W (h) = b (n) b (h) b (h)
∆
∆
∆
φ
φ + φ
φ + φ + φ
i j ij 0
i ij j j 0
0 (h) (
1
;b i i ( i ). d = T( (
∞
∞∆
⎧φ = ⎨ ⎩
φ
∫
∫
Let:
Lec22.5-14 3/27/01
If T a W and noise n 0,
then T Dd T, perfect retr eva f W not s ngular
11 1
21 1 22 2
31 1 32 2 33 3
W (h
Where: h)dh
are known a pr or from phys cs Then: h)W h)dh
• φ = δ
Proof for Continuous Variables
G4
1
2
) = b (h)
W (h) = b (h) b (h)
∆
∆
φ
φ + φ
j j 0
d = T( ( ∞∆ ∫
N j j
i 1 = (h) ∆
= ∑
( ) N tt t t
j i i j i 0 0 N i N N
i im m jn n i ji i 1 m 1 n 1 i 10
d ( ( d
k b (h) b (h) ( ) =
∞
=
∞ ∆
= = = =
= ⇒ = =
⎛ ⎞ = φ φ⎜ ⎟
⎝ ⎠
∑ ∫
∑ ∑ ∑ ∑∫
1 d i ix
k̂ Q d k i i− =
= = Lec22.5-15 3/27/01
11 1
21 1 22 2
W (hThen: h)W h)dh
If we force T(h) k W
Then: k W h) W h)dh k W W k Q
dh k Q ⎞⎛ ⎟⎜ ⎠⎝
Therefore Qk where Q s a known square matr
So let where Q s non-s ngular
Proof for Continuous Variables
G5
1k