Reliability analysis in Random variables engineering ... · Reliability analysis in engineering...

6
1 Reliability analysis in engineering applications Random variables and standard distributions Structural Engineering - Lund University 1 Random variables and standard distributions Random variables A random variable is a function X(v) defined on a sample space Ώ. The random variable maps the event v into R 1 . Structural Engineering - Lund University 2 Ω ) (v X v 1 R The random variable is generally described by it’s cumulative distribution function, F X Random variables The cumulative distribution function, F X (x) defines the probability P that the random variable X is less or equal to a certain value x. Structural Engineering - Lund University 3 ( ) ( ) x X P x X P x F X > = = 1 ) ( Random variables For a distribution function, F X (x) for a R.V. X, the following must be valid: 1. F X (x) 0 then x 0,8 1 Structural Engineering - Lund University 4 2. F X (x) 1 then x 3. If x increase, F X (x) increase (growing function) This implies that if ab is: P(a<X b)=F X (b)-F X (a) 0 0,2 0,4 0,6 -3 -2 -1 0 1 2 3 4 5 6 7 x F X (x) Random variables Another way to describe a R.V. is by it’s probability density function, f X (x). 0,3 0,4 Structural Engineering - Lund University 5 0 0,1 0,2 -3 -2 -1 0 1 2 3 4 5 6 7 x f X (x) f x describes how the probability density is distributed. The area under fx is always 1. Random variables There are two types of distributions: Structural Engineering - Lund University 6 Continuous Discrete

Transcript of Reliability analysis in Random variables engineering ... · Reliability analysis in engineering...

Page 1: Reliability analysis in Random variables engineering ... · Reliability analysis in engineering applications ... expfit - Exponential parameter estimation. gamfit ...

1

Reliability analysis in engineering applications

Random variables and standard distributions

Structural Engineering - Lund University 1

Random variables and standard distributions

Random variablesA random variable is a function X(v) defined on a sample space Ώ. The random variable maps the

event v into R1.

Structural Engineering - Lund University 2

Ω

)(vX v

1R

The random variable is generally described by it’s cumulative

distribution function, FX

Random variables

The cumulative distribution function, FX(x) defines the probability P that the random variable X is less

or equal to a certain value x.

Structural Engineering - Lund University 3

( ) ( )xXPxXPxFX >−=≤= 1)(

Random variablesFor a distribution function, FX(x) for a R.V. X, the

following must be valid:

1. FX(x) → 0 then x → –∞0 6

0,8

1

Structural Engineering - Lund University 4

2. FX(x) → 1 then x → ∞

3. If x increase, FX(x) increase (growing function)

This implies that if a≤b is:

P(a<X ≤b)=FX(b)-FX(a)

0

0,2

0,4

0,6

-3 -2 -1 0 1 2 3 4 5 6 7

xF X

(x)

Random variablesAnother way to describe a R.V. is by it’s

probability density function, fX(x).

0,3

0,4

Structural Engineering - Lund University 5

0

0,1

0,2

-3 -2 -1 0 1 2 3 4 5 6 7

x

f X(x

)

fx describes how the probability density is distributed.

The area under fx is always 1.

Random variablesThere are two types of distributions:

Structural Engineering - Lund University 6

Continuous

Discrete

Page 2: Reliability analysis in Random variables engineering ... · Reliability analysis in engineering applications ... expfit - Exponential parameter estimation. gamfit ...

2

Random variablesA continuous R.V. has a continuous distribution function and

can take an infinite number of values.

0 6

0,8

1

0,6

0,8

1

fX(x)FX(x)

Structural Engineering - Lund University 7

0

0,2

0,4

0,6

0 1 2 3 4 5

x

F X(x

)

0

0,2

0,4

,

0 1 2 3 4 5

x

f X(x

)

dxxFdxf X

X))(()( =

dxxfbXaPaFbFb

aXX ∫=≤<=− )()()()(

a b ba

Random variables

0,6

0,8

1

F X(x

)

0,2

0,3

f X(x

)

A discrete R.V. can only take a finite number of values.

fX(x)FX(x)

Structural Engineering - Lund University 8

0

0,2

0,4

0 2 4 6 8

x

F

0

0,1

-2 0 2 4 6 8

x

∑ ≤=

kj xX jpkF )()(⎩⎨⎧

−−=

=annars )1()(

0k då )0()(

kFkFF

kpXX

Xx

Random variables

Mean value

0 8

1

Median1

Location parameters

Structural Engineering - Lund University 9

0

0,2

0,4

0,6

0,8

0 1 2 3 4 5

x

f X(x

)

0

0,2

0,4

0,6

0,8

0 1 2 3 4 5

x

f X(x

) 50%

Center of mass 50 % of the area on each side of the median

(For a symmetric dist. the location parameters are the same.)

Random variables

∑ ⋅=k

X kpkXE )()(

Mean value or expected value

Discrete R.V.

Structural Engineering - Lund University 10

Continuous R.V. ∫∞

∞−

⋅= dxxfxXE X )()(

The first moment, center of gravity

Random variablesScale parameters

fX

Structural Engineering - Lund University 11

x

Random variables

∑ −=k

X kpmxXV )()()( 2

Variance

Discrete R.V.

Structural Engineering - Lund University 12

∫∞

∞−

−= dxxfmxXV X )()()( 2

The variance is also called the second moment. Many standard distributions is described by their first two moments, e.g. the

normal distribution.

Continuous R.V.

Page 3: Reliability analysis in Random variables engineering ... · Reliability analysis in engineering applications ... expfit - Exponential parameter estimation. gamfit ...

3

Random variables

The standard deviation D(X) is defined as:

)()( XVXD =

Structural Engineering - Lund University 13

)()(cov

XEXD

=

The coefficient of variation, cov is the ratio between the standard devation and the mean value:

)()(

Standard probability distributions

q

Let’s assume that we are interested in determineing the failure probability for a steel beam in bending.

Structural Engineering - Lund University 14

fy, WL

q

Limit state function: fyW-qL2/2=0

The normal distributionThe normal distribution,

N(μ,σ)

0,8

1

0 3

0,4

FX fX

Structural Engineering - Lund University 15

0

0,2

0,4

0,6

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X(x

)

0

0,1

0,2

0,3

-3 -2 -1 0 1 2 3 4 5 6 7

x

f X(x

)

The standard normal distribution, N(0,1)

The normal distribution

•Old distribution (the 19th century)

•Symmetric distribution

Structural Engineering - Lund University 16

•Useful distribution to model e.g. permanent loads model uncertainties related to loads, DAF and

dimensions

•Good mathematic characteristics

The normal distributionExample:

If X is a normal distributed R.V. with mean value and standard deviation equal to 6 and 2 respectively. What

is the probability that x is larger than 4 and less or

Structural Engineering - Lund University 17

is the probability that x is larger than 4 and less or equal than 7?

P(4 < x ≤ 7)

The log-normal distribution

11

FX fX

If the logarithm of a R.V. X is normal distributed then X is log-normal distributed.

Structural Engineering - Lund University 18

0

0,2

0,4

0,6

0,8

0 1 2 3 4 5

x

F X(x

)

0

0,2

0,4

0,6

0,8

0 1 2 3 4 5

x

f X(x

)

Page 4: Reliability analysis in Random variables engineering ... · Reliability analysis in engineering applications ... expfit - Exponential parameter estimation. gamfit ...

4

The log-normal distributionParameters

),()ln( lnln σμNYX ∈=

ParametersMean value and

Structural Engineering - Lund University 19

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

2exp)(

2ln

lnσμYE

)))(()(ln(5,0))(ln(2 2ln YEYVYE +−=μ

)))((ln(2 lnln μσ −= YE))exp()2)(exp(2exp()( 2

ln2lnln σσμ −=YV

standard deviation

The log-normal distribution•Asymmetric

•Can't take negative values

•Useful distribution to model e.g. strength

Structural Engineering - Lund University 20

Useful distribution to model e.g. strength parameters, model uncertainties related to

resistance and dimensions.

•Good mathematical features

The uniform distribution

fX

1/(b-a)

FX

1

U(a,b)

Structural Engineering - Lund University 21

bax

ba x

Takes values between a and b with the same probability

The uniform distribution

Meeting between two vehicles

Useful distribution in simulations.

Structural Engineering - Lund University 22

Bridge

The uniform distribution

3500

4000

V1+V2 2000

2500

Meeting at support

Meeting mid span

Structural Engineering - Lund University 23

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

Location of V1 [m]

Mom

ent [

kNm

]

V1

V2

V1 V2

0

500

1000

1500

0 10 20 30 40 50 60

Location of V1 [m]

Mom

ent [

kNm

]

V1+V2

V1

V2

The Poisson distribution

0,6

0,8

1

F X(x

)

Po(λ)

0,2

0,3

f X(x

)

FX(x) fX(x)

Structural Engineering - Lund University 24

0

0,2

0,4

0 2 4 6 8

x

Discrete distribution

0

0,1

-2 0 2 4 6 8

x

The parameter, λ shall be interpreted as intensity.

Page 5: Reliability analysis in Random variables engineering ... · Reliability analysis in engineering applications ... expfit - Exponential parameter estimation. gamfit ...

5

The Poisson distribution

The distribution describes the probability for X number events to come true.

X can be anything, e.g. the number of l h ll d i d h b f

Structural Engineering - Lund University 25

telephone calls during a day or the number of meetings during a year between two heavy

vehicles.

The sum of two Poisson distributed R.V. with mean values λ1 and λ2 is also Poisson

distributed with mean value λ1 + λ2.

The exponential distribution

0,8

1

Exp(m)

FX(x) fX(x)

0,8

1

Structural Engineering - Lund University 26

0

0,2

0,4

0,6

0 1 2 3 4 5

x

F X(x

)

0

0,2

0,4

0,6

0 1 2 3 4 5

x

f X(x

)

The exponential distributionOften useful to describe remaining lifetime of

different components, e.g. for how long time will a bulb work? Another example: What is the time

interval between to heavy vehicles?

Structural Engineering - Lund University 27

The exponential distribution is also very useful to model extreme

values.

The exponential and the poission distinction

l3

l2

l1

Structural Engineering - Lund University 28

e3e2e1

d2 d1t=0 t=

l: is uniformly dist. When in time or space do the events occur.

e: Is Poisson dist., number of events

d: exp. dist: time interval between two events

Fitting values to standard distributions

betafit - Beta parameter estimation.binofit - Binomial parameter estimation.dfittool - Distribution fitting tool.

Matlab ”help stats”

Structural Engineering - Lund University 29

gevfit - Extreme value parameter estimation.expfit - Exponential parameter estimation.gamfit - Gamma parameter estimation.gevfit - Generalized extreme value parameter estimation.gpfit - Generalized Pareto parameter estimation.lognfit - Lognormal parameter estimation.nbinfit - Negative binomial parameter estimation.normfit - Normal parameter estimation.poissfit - Poisson parameter estimation.raylfit - Rayleigh parameter estimation.unifit - Uniform parameter estimation.wblfit - Weibull parameter estimation.

Simulations of R.V. Matlab ”help stats”

betarnd - Beta random numbers.binornd - Binomial random numbers.chi2rnd - Chi square random numbers.evrnd - Extreme value random numbers.exprnd - Exponential random numbers.

Structural Engineering - Lund University 30

p pfrnd - F random numbers.gamrnd - Gamma random numbers.geornd - Geometric random numbers.gevrnd - Generalized extreme value random numbers.gprnd - Generalized Pareto inverse random numbers.lognrnd - Lognormal random numbers.ncx2rnd - Noncentral Chi-square random numbers.normrnd - Normal (Gaussian) random numbers.poissrnd - Poisson random numbers.unidrnd - Discrete uniform random numbers.unifrnd - Uniform random numbers.wblrnd - Weibull random numbers.

Page 6: Reliability analysis in Random variables engineering ... · Reliability analysis in engineering applications ... expfit - Exponential parameter estimation. gamfit ...

6

Example: Determine the distribution for the sum you get when you throw 5 dices and determine the probability that

the result is less than 21?>> help unidrnd

UNIDRND Random arrays from the discrete uniform distribution

Structural Engineering - Lund University 31

UNIDRND Random arrays from the discrete uniform distribution.R = UNIDRND(N) returns an array of random numbers chosen uniformly

from the set {1, 2, 3, ... ,N}. The size of R is the size of N.

R = UNIDRND(N,MM,NN,...) or R = UNIDRND(N,[MM,NN,...]) returns anMM-by-NN-by-... array.

>> unidrnd(6,1,5)3 6 5 2 6

>> sum(unidrnd(6,1,5))22

Example:

close all;clear all;

for i =1:10000b(i)=sum(unidrnd(6,1,5));

end 0 4

0.5

0.6

0.7

0.8

0.9

1

F(x)

Empirical and Normal estimated cdf

Structural Engineering - Lund University 32

wnormfit(b)

5 10 15 20 25 300

0.1

0.2

0.3

0.4

xμ=17,6σ=3,8

normcdf(20,17.6,3.8)Ans = 0.2638

Goodness of fit

0,6

0,7

0,8

0,9

1Test data

Fitted distribution

0,2

0,3Test data

Fitted distribution

Structural Engineering - Lund University 33

0

0,1

0,2

0,3

0,4

0,5

5 10 15

x

F X(x

)

0,0

0,1

5 7 9 11 13 15

x

f X(x

)

Goodness of fitvisual

600

700

QQ-plot

Structural Engineering - Lund University 34

0

100

200

300

400

500

0 100 200 300 400 500 600 700

Empirical quantiles

Theo

retic

al q

uant

iles

Goodness of fitVisual Distribution

paper

0.9970.999

Normal Probability Plot

Structural Engineering - Lund University 35

5 10 15 20 25

0.0010.0030.01 0.02 0.05 0.10

0.25

0.50

0.75

0.90 0.95 0.98 0.99

Data

Pro

babi

lity

Goodness of fitNumerical

•Mean square error

•Kolmogorov Smirnov

Structural Engineering - Lund University 36

Kolmogorov Smirnov

•Andersson-Darlingtest

•Ҳ2-test