Reflections on mathematical models and simulation of · PDF file ·...

38
Reflections on mathematical models and simulation of gasparticle flows Sankaran Sundaresan Princeton University Circulating Fluidized Beds – 10 May 2, 2011

Transcript of Reflections on mathematical models and simulation of · PDF file ·...

Page 1: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Reflections on mathematical models and simulation of gas‐particle flows

Sankaran Sundaresan

Princeton University

Circulating Fluidized Beds – 10 

May 2, 2011

Page 2: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Outline

• Examples of flow characteristics• Modeling issues• Modeling approaches• Outlook

Page 3: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

With so many fine books and software products around, 

what is there to say?

Why model?  What to model?

Page 4: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

4

Side-by-SideFCC unit

Riser-Reactor

StrippingSteam

Reaction Products

Cyclone

Feed

RegeneratedCatalyst Standpipe

Air grid

Air

Regenerator

Why model?  What to model?

What phenomena would we like to understand?

To baghouse

Lift-line air

fluidized bed

standpipe riser

A: aeration ports

AA

A

A

A

A

A

A

Slide valve

A

Page 5: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Loop stability

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0 20 40 60

Solid

s vo

lum

e fr

actio

n

Time (seconds)

Low aeration rate(Stable flow)

Srivastava et al. Powder Tech., 100, 173 (1998) 

To baghouse

Lift-line air

fluidized bed

standpipe riser

A: aeration ports

AA

A

A

A

A

A

A

Slide valve

A

Page 6: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Loop stabilityHigher aeration rate

(Unstable flow)

Srivastava et al. Powder Tech., 100, 173 (1998) 

What is the true mechanism for the instability?How does the stability transition change with scale‐up? 

To baghouse

Lift-line air

fluidized bed

standpipe riser

A: aeration ports

AA

A

A

A

A

A

A

Slide valve

A

Page 7: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Flow characteristics in the riser

How does the flow pattern change with scale‐up? How fast is the radial dispersion? How effective is the contacting between gas and particles?

To baghouse

Lift-line air

fluidized bed

standpipe riser

A: aeration ports

AA

A

A

A

A

A

A

Slide valve

A

Page 8: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Competing options

Choice depends on:• backmixing• contacting efficiency• attrition, erosion, etc.

How do these issues change with scale‐up?

How well can we control them? 

Page 9: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Jet streaming

How well can we predict them? How does such flow behavior 

change with scale‐up?

Knowlton, et al., Powder Tech., 150, 72 (2005)

Attributed to gas compression in deep beds operating at low pressures

Page 10: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Cyclone performance

Strongly swirling flow aids separation

Gas turbulence adversely affects separation

Competition between swirl and turbulence?

How do particle loading, design choices and throughputs affect this competition?

Page 11: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Mechanism and effect of liquid injection on flow

Flow characteristics are affected by:• Agglomeration• Gas evolution

Adapted from Bruhns & Werther, 2005.

Page 12: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Mechanism and effect of liquid injection on flow

Flow characteristics are affected by:• Agglomeration• Gas evolution

Adapted from Bruhns & Werther, 2005.

How well do we understand the local and global flows?

How will these flow structures change upon scale‐up?

Page 13: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Why is it difficult to model and simulate?  

Widely varying particle loading levels.  As a result, different regimes of flow

Need to quantify the physical processes reasonably well in all these regimes

Flow is invariably unsteady with a wide range of length and time scales.  Cannot resolve all of them.

Particle size distribution 

Changing particle characteristics

Wet systems:  agglomeration and breakup

To baghouse

Lift-line air

fluidized bed

standpipe riser

A: aeration ports

AA

A

A

A

A

A

A

Slide valve

A

Page 14: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Why model?   What models?  

• Understand physical processes

• Develop simpler models 

• Explore design alternatives

• Scale up and process retrofits

To baghouse

Lift-line air

fluidized bed

Standpipe Ris

erA:

Aeration ports

AA

A

A

A

A

A

A

Slide valve

A

Simulations:

• at the level of a few thousand particles

• at the device scale

• Euler (fluid) ‐ Euler (particles) models 

• Euler (fluid) – Lagrange (particles)

Page 15: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

( ) ( )

f f f f f f f f f f ftρ φ ρ φ φ ρ φ∂

+∇⋅ = − ∇⋅ − +∂

u u u f gσ

( ) ( ) 0ts s

s s s

ρ φρ φ

∂+∇ ⋅ =

∂u

( ) ( ) 0tf f

f f f

ρ φρ φ

∂+∇ ⋅ =

∂uFluid

particle Phase stress

interphaseinteraction

gravity

effectivebuoyancy

( ) ( )

s s s s s s s s s f s stρ φ ρ φ φ ρ φ∂

+∇⋅ = −∇⋅ − ∇ ⋅ + +∂

u u u f gσ σ

1s fφ φ+ =

Solids

Solids

Fluid

Two‐fluid model equations

inertia

Gas‐fluidized beds, risers and standpipes:  fluid phase stress ~ pressure only

Page 16: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

( ) ( )

f f f f f f f f f f fPtρ φ ρ φ φ ρ φ∂

+∇⋅ = − ∇ − +∂

u u u f g

( ) ( ) 0ts s

s s s

ρ φρ φ

∂+∇ ⋅ =

∂u

( ) ( ) 0tf f

f f f

ρ φρ φ

∂+∇ ⋅ =

∂uFluid

interphaseinteraction

gravity

effectivebuoyancy

( ) ( )

s s s s s s s s s f s sPtρ φ ρ φ φ ρ φ∂

+∇ ⋅ = −∇⋅ − ∇ + +∂

u u u f gσ

Solids

Solids

Fluid

Two‐fluid model equations

inertia

Gas‐fluidized beds, risers and standpipes:  interphase interaction ~ drag force only

1s fφ φ+ =

particle Phase stress

Page 17: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

( ) ( )

f f f f f f f f f d f fPtρ φ ρ φ φ ρ φ∂

+∇⋅ = − ∇ − +∂

u u u f g

( ) ( ) 0ts s

s s s

ρ φρ φ

∂+∇ ⋅ =

∂u

( ) ( ) 0tf f

f f f

ρ φρ φ

∂+∇ ⋅ =

∂uFluid

interphaseinteraction

gravity

effectivebuoyancy

( ) ( )

s s s s s s s s s f d s sPtρ φ ρ φ φ ρ φ∂

+∇⋅ = −∇⋅ − ∇ + +∂

u u u f gσ

1s fφ φ+ =

Solids

Solids

Fluid

Two‐fluid model equations

inertia

Good “text‐book” drag force models are available in the literature for nearly homogeneous systems: e.g., Wen and Yu (1966)

Wen & Yu, Chem. Eng. Prog. Symp. Ser., 62, 100 (1966)

particle Phase stress

Page 18: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

( ) ( )

f f f f f f f f f d f fPtρ φ ρ φ φ ρ φ∂

+∇⋅ = − ∇ − +∂

u u u f g

( ) ( ) 0ts s

s s s

ρ φρ φ

∂+∇ ⋅ =

∂u

( ) ( ) 0tf f

f f f

ρ φρ φ

∂+∇ ⋅ =

∂uFluid

interphaseinteraction

gravity

effectivebuoyancy

( ) ( )

s s s s s s s s s f d s sPtρ φ ρ φ φ ρ φ∂

+∇⋅ = −∇⋅ − ∇ + +∂

u u u f gσ

Solids

Solids

Fluid

Two‐fluid model equations

inertia

• force chains at high particle loading 

• binary collisions between particles

• particle streaming

• Important in hoppers, bins, standpipes

• Less so in fluidized beds and risers

• Even less in freeboard region & cyclones

1s fφ φ+ =

particle Phase stress

Page 19: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

2D Domain size : 64 cm x 64 cm

3D Domain size : 8 cm x 8 cm x 8 cm

Simulations performed with MFIX

256 x 256

64x64x64

Average particle volume fraction: 0.05

75 μm particles in air

Instability driven by: inertia, dependence of drag force on particle loading level, inelastic collisions

Fine structure

Stabilized by: weak particle phase stress

Weak stabilization – small length scale

Resolve or not resolve?

Page 20: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Simple example: turbulent fluidized bed  

Vg> Vt

Vg= 0; Vp = Vt

Sedimentation of a single particle

Vg= Vt; Vp = 0

Levitation of a single particle

Vg> Vt; Vp = ?

Vertical conveying of a single particle

Presence of other particles typically hinder!

Bed emptying time for turbulent fluidized beds are much longer than predicted by this model

Page 21: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Simple example: turbulent fluidized bed  

Bed expansion decreases as one improves resolution*

When one does not resolve all the flow structures, one must “correct” the drag force model

O’Brien & Syamlal, CFB‐4 (1993)Li & Kwauk (1994) – EMMS modelMcKeen & Pugsley (2003) – tune cluster size

*Parmentier et al., AICHE J. (2011); Igci et al., AICHE J. (2010)

Extent of correction depends on chosen resolution*,#

( )homod f sf β= −u u

Standard form

Modified form

( ) ( ) ( )( )homo

1d f sf c hβ φ= − − Δu u

Function of resolution

Page 22: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Newly emerging drag force models  

*Parmentier et al., AICHE J. (2011); Igci et al., AICHE J. (2010, 2011)

0 as 0

1 as c→ Δ→⎧⎨→ Δ→∞⎩

0 0.1 0.2 0.3 0.4 0.5 0.60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Particle volume fraction

h 2D

( )h φ• Parmentier et al. (2011) 

dynamically adjust c.

• Igci et al. add wall correction

Further refinements

( ) ( ) ( )( )homo

1d f sf c hβ φ= − − Δu u

• We typically use different grid resolutions when simulating pilot scale and commercial scale units

• The effective drag law is now  different for the two cases!

Page 23: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Newly emerging drag force models  

*Li & Kwauk (1994)

0 as 0

1 as c→ Δ→⎧⎨→ Δ→∞⎩

0 0.1 0.2 0.3 0.4 0.5 0.60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Particle volume fraction

h 2D

( )h φ

EMMS model*

( ) ( )( )homo

1d f s EMMSf hβ φ= − −u u

( ) ( ) ( )( )homo

1d f sf c hβ φ= − − Δu u

Page 24: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Particle phase stress

particle phase stress

interphaseinteraction

gravity

effectivebuoyancy

( ) ( )

s s s s s s s s s f d s sPtρ φ ρ φ φ ρ φ∂

+∇⋅ = −∇⋅ − ∇ + +∂

u u u f gσSolids

inertia

Campbell, JFM, 465, 261 (2002); Tardos et al., Powder Technol., 131, 23 (2003): Lois & Carlson, Euro. Phys. Lett., 80, 58001 (2007). 

Page 25: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Discrete Element Method

• Newton’s equations 

• Spring – dashpot contact model

• Open domain (LAMMPS*) + commercial

• Can include cohesion, liquid bridge, non‐spherical shape, size distribution

Cundall & Strack, Geotechnique, 29, 47 (1979); Zhu et al., CES, 63, 5728 (2008).

*LAMMPS code. http://lammps.sandia.govPlimpton, J. Comp. Phys., 117, 1 (1995)

Page 26: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Quasi‐static

inertial

intermediate

Scaled Pressure

Quasi‐static intermediate

inertial

DEM simulations of simple shear flow

Scaled shear rate

Scaled Shear Stress

Chialvo et al. (2011).

Page 27: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

DEM simulations of simple shear flow

Quasi‐static

inertial

intermediate

inertial

Quasi‐static

intermediate

Rescaled shear rate

Rescaled Shear StressRescaled Pressure

Chialvo et al. (2011).

Page 28: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Standpipe flow of FCC particles

0.20

0.30

0.40

0.50

0.60

0 1 2 3 4 5 6

External aeration rate (m3/hr)

Ave

rage

sol

ids

volu

me

frac

tion

Friction

0% 12% 24% 36% 48% 60%

Increasing external aeration

s

unstable

s s uSrivastava et al. Powder Tech., 

100, 173 (1998) 

Page 29: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Do such small levels of stress matter in fluidized beds and CFBs?

They influence the size of the small clusters and streamers

When not resolving all the flow structures, one must “correct”:

• the drag force model + 

• effective stresses due to fluctuating

meso‐scale structures

DEM simulations of simple shear flowScaled Pressure Scaled Shear Stress

Chialvo et al. (2011).

Page 30: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Chen et al., Application of Coarse Grained Drag Law in Computational Fluid Dynamics Simulations of Fluidized Beds, AIChE Annual Meeting (2008)

Time AveragedInstantaneous

Fully cylindrical cold flow model of Syncrude coker – 1/19th scale.Song et al., Powder Tech, 147, 126 (2004).

How to go from scaled down unit to full commercial scale?

• Traditional – keep the same grid size; not practical

• Remedy: Use larger grids with appropriately scaled constitutive laws

Coker model simulation

325,000 grids; 32 processors

1 computational day per second of real time

Page 31: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Handling particle size distributionEuler‐Euler approachMultiple particle phasesMethod of moments

Generalize kinetic theoryGeneralize drag law

• Inherent size distribution

• Changing particle properties

• Cast the particle phase balance equations in a Lagrangian framework• Follow the motion of a few million test particles, referred to as parcels, 

while treating the remaining (ghost) particles through mean field• Multi‐Phase – Particle In Cell method*

• Much easier to handle particle size distribution and changing particle properties; faster computations

*Originally derived directly from a probabilistic approach: D.M. Snider, J. Comp. Phys., 170, 523 (2001)

Page 32: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

{

Effective buoyancyparticlephase stress

weightall other fluid-particle interactions

p pp p s p f

s

pp p d

s

d vv v

dt

vv

ρφ

ρφ

= − ∇⋅ − ∇ ⋅

+ +

1424314243

123

u

g f

σ σ

Discrete Particle Model Approach

Snider, J. Comp. Phys., 170, 523 (2001); O’Rourke & Snider, CES, 65, 6014 (2010); O’Rourke et al., CES, 64, 1784 (2009).

• Particle phase stress term captures the effects of all collisions• No need to track collisions between parcels• Different parcels can have different underlying particle size, property, etc.• Parcels can be allowed to interact in the mean: mimic kinetic theory, transfer 

liquids, etc.

What are the right drag law and effective stresses  to use when all flow structures are not resolved?

Page 33: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

CPFD® Simulation of a Settler

Courtesy: Dale Snider & Ken Williams, CPFD Software, LLC.

Page 34: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

{

Effective buoyancyparticlephase stress

weightall other fluid-particle interactions

p p pp p s p f

s

pp p d

s

d vv v

dt

vv

ρφ

ρφ

= − ∇⋅ − ∇ ⋅

+ +

1424314243

123

u

g f

σ σ

Discrete Particle Model Approach

#Patankar & Joseph, IJMF, 27, 1659 (2001); #Benyahia & Galvin, IECR, 49, 10588 (2010); *Chu et al., CES, 66, 834 (2011)

• MP‐PIC:  Particle phase stress term captures the effects of all collisions

• No need to track collisions between parcels

• What if we track collisions between parcels?#

• Pretty well in quasi‐static regime• Much less accurately in the inertial 

regime

If parcel size = particle size:

Track all collisions

CFD – DEM*

Page 35: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Discrete Particle Model with Collision Tracking

Cheng et al., PRL, 99, 188001 (2007); Radl et al. (2011)

0,pUr

Rsample

yjet

yx

particle reservoir(dp, φp)

Dtar

Pros and cons for tracking collisions between parcels?

Still evolving…

Compare scattering angles predicted with experimental data

Page 36: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Verification          vs.          Validation

• Can the simulator correctly reproduce analytically obtainable results for some test problems?

• Can the independence of the predictions to simulator parameters be ascertained? Grid size, parcel size, etc.

• Model vs. model: CFD‐DEM, Euler‐Euler, MP‐PIC, etc.

• Comparison against experimental data

• Begin with a kinetic theory based Euler‐Euler model and filter to obtain a coarse‐grained Euler‐Euler model 

• Show that both model yield the same solution

• Many early validation studies were based on 2D simulations

• Quantitative differences between 2D and 3D

• Often validation are with data in pilot scale units with some tuning

• How do we know that the same tuning will work for larger scale where we will have coarser grid resolution?

Page 37: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Things to consider in validation

• Comparison against experimental data at a minimum of two different scales

• Flow regime maps – covering turbulent to fast fluidization 

• Good data base for riser flows: • Vary gas flux while holding solids flux constant• Vary solids flux while holding gas flux constant

• Good database for standpipes are needed as well

Page 38: Reflections on mathematical models and simulation of · PDF file · 2012-09-11Reflections on mathematical models and simulation of gas ... uuu. σ f g ( ) 0 t. ss ss s ... uuuf g

Outlook• More and more 3D simulations of the full CFB loop

• GPU based computing

• Standpipe flows: detailed experimental characterization and validation of simulations – more needed

• Both Euler‐Euler and Euler‐Lagrange will continue to develop; but, Euler‐Lagrange approach (Parcel based: with or without collision tracking) is very likely to gain more traction:• Ease of handling PSD and changing particle properties

• How to adapt the ideas on microscale modeling (such as kinetic theory) and coarse simulations developed for Euler‐Euler approach to the discrete methods – fertile topic

• More and more effort on wet systems

• More case studies on reacting flows 

Carbon capture, chemical looping, methanol to olefin

+Old, but still very relevant problems