Reduced-Order Modeling Of Hidden...

29
Reduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric Herzet Inria, Rennes SIAM UQ - 2016 P. Héas (INRIA Rennes) 1 / 23

Transcript of Reduced-Order Modeling Of Hidden...

Page 1: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Reduced-Order Modeling Of Hidden Dynamics

Patrick Héas & Cédric Herzet

Inria, Rennes

SIAM UQ - 2016

P. Héas (INRIA Rennes) 1 / 23

Page 2: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

High-Dimensional Model

System of equations {xt = ft(xt−1, θt−1),x1 = θ1,

withstate variable xt ∈ Rn,ft : Rn × Rpt → Rn,some parameters θt ∈ Rpt .

⇒ unacceptable computational burdens.

P. Héas (INRIA Rennes) 2 / 23

Page 3: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Reduced-Order Models (ROMs)

Reasonable ROM approximation for a set of operating regimes

X , {x , (x1 · · · xT ) : x trajectory with {θt}Tt=1 ∈ R },

where R is a set of admissible parameters.

P. Héas (INRIA Rennes) 3 / 23

Page 4: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

ROM Building Scenarios

Scenarios:i) representative set of trajectories (X perfectly known)ii) no representative trajectories because:

uncertainty on R, i.e. on X ,intractable computation of X .

i) is standard, but how to manage ii)?substitute trajectories in X with observations ?will ignore noise, incompleteness of observations.

P. Héas (INRIA Rennes) 4 / 23

Page 5: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Our Contributions

We propose a methodology for model-reduction whichaccounts for the uncertainties in the system to reduce;exploits observations in the reduction process while taking intoaccount their imperfect nature.

Idea: recast model reduction as a Bayesian inference problem.

P. Héas (INRIA Rennes) 5 / 23

Page 6: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Ingredients

Unknown regimes x = (x1 · · · xT ):θt realization of a random variable Θt (unknown support R),i.e. , xt realization of a random variable Xt (unknown support X ).

Set of M observations, say matrix Y = (Y 11 · · ·Y M

T ) satisfying

Y it = ht(Xt) + Wt ,

where ht : Rn → Rm, m < n and Wt ’s are mutually independentnoises.

P. Héas (INRIA Rennes) 6 / 23

Page 7: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Bayesian Framework

Uncertainty on state x given observation Y = y is quantified by theposterior, say µ(dx, y).Final goal is to include this information in the model reductionprocess.

P. Héas (INRIA Rennes) 7 / 23

Page 8: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Surrogate Prior

We assume that trajectories in X must have a non-zero probabilitySurrogate models are commonly used in data assimilation with PDEs:

linear sub-space (e.g. Galerkin projection) + bounded error,probabilistic structure (e.g. random fields, Markovian dynamics).

P. Héas (INRIA Rennes) 8 / 23

Page 9: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

ROM A Posteriori Inference

ROM parametrization given by

u ∈ arg minu∈U

〈µ(dx), ‖x − x(u)‖〉,

where the ROM is defined byan approximation x(u)a set U .an error norm ‖x − x(u)‖,

P. Héas (INRIA Rennes) 9 / 23

Page 10: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Particularization 1: Galerkin Projections

Models the subspace spanned by the columns of u ∈ Rn×k , k < n:xt = uzt with k-dimensional recursion{

zt = u∗ft(uzt−1, θt−1),z1 = u∗θ1.

Subspace may be chosen as

u ∈ arg minv∈U

〈µ(dx), ‖ x1:T − x1:T (v) ‖2F 〉,

with U = {v ∈ Rn×k |v∗v = ik}.

POD: tractable error bound

‖ x1:T − x1:T (u) ‖2F≤ cte ‖ x1:T − uu∗x1:T ‖2F .

P. Héas (INRIA Rennes) 10 / 23

Page 11: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Particularization 1: Galerkin Projections

Models the subspace spanned by the columns of u ∈ Rn×k , k < n:xt = uzt with k-dimensional recursion{

zt = u∗ft(uzt−1, θt−1),z1 = u∗θ1.

Subspace may be chosen as

u ∈ arg minv∈U

〈µ(dx), ‖ x1:T − x1:T (v) ‖2F 〉,

with U = {v ∈ Rn×k |v∗v = ik}.

POD: tractable error bound

‖ x1:T − x1:T (u) ‖2F≤ cte ‖ x1:T − uu∗x1:T ‖2F .

P. Héas (INRIA Rennes) 10 / 23

Page 12: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Particularization 2: POP Approximation

Krylov subspaces approximation

xt ≈ pq∗xt−1

with p,q ∈ Rn×k , k < n.⇔ Equivalent to xt = pzt with k-dimensional recursion{

zt = q∗pzt−1,

z1 = p†θ1.

Krylov subspaces chosen as

(p,q) ∈ arg minp,q∈Rn×k

〈µ(dx), ‖ x2:T − x2:T ‖2F 〉.

Tractable error bound ‖ x2:T − x2:T ‖2F≤ cte ‖ x2:T − pq∗x1:T−1 ‖2F .

P. Héas (INRIA Rennes) 11 / 23

Page 13: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Particularization 2: POP Approximation

Krylov subspaces approximation

xt ≈ pq∗xt−1

with p,q ∈ Rn×k , k < n.⇔ Equivalent to xt = pzt with k-dimensional recursion{

zt = q∗pzt−1,

z1 = p†θ1.

Krylov subspaces chosen as

(p,q) ∈ arg minp,q∈Rn×k

〈µ(dx), ‖ x2:T − x2:T ‖2F 〉.

Tractable error bound ‖ x2:T − x2:T ‖2F≤ cte ‖ x2:T − pq∗x1:T−1 ‖2F .

P. Héas (INRIA Rennes) 11 / 23

Page 14: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Closed-form solutions

We obtain solutions for POD-Galerkin and POP in terms ofeigen-decomposition of matrices

〈µ(dx), x1+`:T x∗1:T−`〉, ` ∈ {0, 1}

P. Héas (INRIA Rennes) 12 / 23

Page 15: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Comparison With State-Of-The-Art

〈µ(dx), x1+`:T x∗1:T−`〉 =T∑

t=1+`

cov(xt−`, xt)︸ ︷︷ ︸covariance

+ xt−`(y)︸ ︷︷ ︸mean

x∗t (y).

In standard methods, unknown regimes are substituted by snapshots’sposterior mean, or by some other estimate, yielding the approximation

〈µ(dx), x1+`:T x∗1:T−`〉 ≈T∑

t=1+`

xt−`(y)x∗t (y).

⇒ Uncertainty (or covariance) on regimes is neglected!

P. Héas (INRIA Rennes) 13 / 23

Page 16: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Comparison With State-Of-The-Art

〈µ(dx), x1+`:T x∗1:T−`〉 =T∑

t=1+`

cov(xt−`, xt)︸ ︷︷ ︸covariance

+ xt−`(y)︸ ︷︷ ︸mean

x∗t (y).

In standard methods, unknown regimes are substituted by snapshots’sposterior mean, or by some other estimate, yielding the approximation

〈µ(dx), x1+`:T x∗1:T−`〉 ≈T∑

t=1+`

xt−`(y)x∗t (y).

⇒ Uncertainty (or covariance) on regimes is neglected!

P. Héas (INRIA Rennes) 13 / 23

Page 17: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Simulations

Rayleigh-Bénard convection (generalization of Navier-Stokes advection):quadratic dynamics ft w.r.t. velocities {xt}50

t=1 where xt ∈ Rn satisfy{xt+1 = ft+1(xt , θt),x1 = θ1,

with some initial condition θ1 and forcing θt ;linear observations {yt}50

t=1 where yt ∈ Rm satisfy

yt = htxt + wt , Wt ∼ N (0, σ2im).

P. Héas (INRIA Rennes) 14 / 23

Page 18: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Simulations: a simple case

Assume a Gaussian time-uncorrelated model:n = 215, m = 214,1 observation (M = 1),1 unknown regime to reproduce (Dirac on R),self-similar surrogate prior on xt ’s1: N (0,qt).

in this linear Gaussian setting, we obtain a closed-form posteriordistribution µ {

xt(y) = σ−2pth∗t (yt − ξt),cov(xt , xt) = σ2(h∗t ht + σ2qt)−1.

1see references in P. Héas, F. Lavancier, S. Kadri Harouna. Self-similar prior and wavelet bases for hidden incompressible

turbulent motion. SIAM Journal on Imaging Sciences, Volume 7, Issue 2, pp. 1171-1209, 2014.P. Héas (INRIA Rennes) 15 / 23

Page 19: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Simulations: a simple case

Assume a Gaussian time-uncorrelated model:n = 215, m = 214,1 observation (M = 1),1 unknown regime to reproduce (Dirac on R),self-similar surrogate prior on xt ’s1: N (0,qt).

in this linear Gaussian setting, we obtain a closed-form posteriordistribution µ {

xt(y) = σ−2pth∗t (yt − ξt),cov(xt , xt) = σ2(h∗t ht + σ2qt)−1.

1see references in P. Héas, F. Lavancier, S. Kadri Harouna. Self-similar prior and wavelet bases for hidden incompressible

turbulent motion. SIAM Journal on Imaging Sciences, Volume 7, Issue 2, pp. 1171-1209, 2014.P. Héas (INRIA Rennes) 15 / 23

Page 20: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Simulations: A Simple Case

µ(dxt , yt) ‖xt − x truet ‖

P. Héas (INRIA Rennes) 16 / 23

Page 21: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Simulations: A More Involved Scenario

Assume a general hidden Markov model:n = 210, m = 29,M = 25 observations,unknown uniform prior on R,Markovian surrogate prior,{

Xt = ft+1(Xt ,Θt),X1 ∼ µ1(dθ1),

where {Θt}t is uniformly distributed of support including R, but 2times larger.

The posterior µ is approximated by particle filtering.

P. Héas (INRIA Rennes) 17 / 23

Page 22: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Simulations: A More Involved Scenario

Assume a general hidden Markov model:n = 210, m = 29,M = 25 observations,unknown uniform prior on R,Markovian surrogate prior,{

Xt = ft+1(Xt ,Θt),X1 ∼ µ1(dθ1),

where {Θt}t is uniformly distributed of support including R, but 2times larger.

The posterior µ is approximated by particle filtering.

P. Héas (INRIA Rennes) 17 / 23

Page 23: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Results: POD-Galerkin Projection Error (Simple Case)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30 35 40 45 50

Norm

alize

d Sq

uare

Erro

r

# Modes

Square `2 error with respect to dimension k using state-of-the-art snapshot method (red solid line), the proposed method (greendashed line) or using directly the ground truth (blue dotted line).

P. Héas (INRIA Rennes) 18 / 23

Page 24: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Results: POP Approximation Error (Involved Scenario)

Square `2 error with respect to dimension k using posterior-based method (in purple), state-of-the-art snapshot method (ingreen) or a construction with no regimes uncertainty (in turquoise).

P. Héas (INRIA Rennes) 19 / 23

Page 25: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

10-Dimensional POP Approximation Of Snapshot 1

vorticty temperature

above: posterior-based,middle: state-of-the-art snapshot method,below: no regimes uncertainty.

P. Héas (INRIA Rennes) 20 / 23

Page 26: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

10-Dimensional POP Prediction Of Snapshot 1

vorticty temperature

above: posterior-based,middle: state-of-the-art snapshot method,below: no regimes uncertainty.

P. Héas (INRIA Rennes) 21 / 23

Page 27: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Conclusions

Integration of observations to reduce the regimes uncertainties.Bayesian inference context.Solutions for POD-Galerkin and POP given in term ofeigendecomposition of

T∑t=1+`

cov(xt−`, xt) + xt−`(y)x∗t (y).

P. Héas (INRIA Rennes) 22 / 23

Page 28: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Perspectives

Can we obtain a ROM expected error bound

〈µ(dx), ‖x − x(u)‖〉 ≤ function of (prior, surrogate, likelihood)?

Which surrogate will minimize this bound?

http://people.rennes.inria.fr/Patrick.Heas/

P. Héas (INRIA Rennes) 23 / 23

Page 29: Reduced-Order Modeling Of Hidden Dynamicspeople.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Geronimo/files/C14.pdfReduced-Order Modeling Of Hidden Dynamics Patrick Héas & Cédric

Perspectives

Can we obtain a ROM expected error bound

〈µ(dx), ‖x − x(u)‖〉 ≤ function of (prior, surrogate, likelihood)?

Which surrogate will minimize this bound?

http://people.rennes.inria.fr/Patrick.Heas/

P. Héas (INRIA Rennes) 23 / 23