Reduced Density Matrix Functional Theory for Many Electron ... sharma/talks/ · PDF file...
date post
15-May-2020Category
Documents
view
4download
0
Embed Size (px)
Transcript of Reduced Density Matrix Functional Theory for Many Electron ... sharma/talks/ · PDF file...
Reduced Density Matrix Functional Theory for Many Electron Systems
S. Sharma1,2, J. K. Dewhurst1,2 and E. K. U. Gross2
1 Fritz Haber Institute of the Max Planck Society, Berlin, Germany 2 Institut für Theoretische Physik, Freie Universität Berlin, Germany
12 June 2009
S. Sharma Reduced Density Matrix Functional Theory
Schrödinger equation for N particles:
Ĥ Ψi(x1,x2 . . . ,xN ) = Ei Ψi(x1,x2, . . . ,xN )
x ≡ {r, σ}
Ĥ = −1 2
N∑ i
∇2i + N∑ i
N∑ j 6=i
1 |ri − rj |
+ N∑ i
vext(ri)
vext(ri) = − M∑ ν
Zν |Rν − ri|
S. Sharma Reduced Density Matrix Functional Theory
Reduced density matrix functional theory
Density
ρ(r) = N ∫
Ψ(r, r2, . . . , rN )Ψ∗(r, r2, . . . , rN ) d3r2 . . . d3rN .
E[ρ] = T [ρ] + Eext[ρ] + Eee[ρ]
One-reduced density matrix (1-RDM)
γ(r, r′) = N ∫
Ψ(r, r2, . . . , rN )Ψ∗(r′, r2, . . . , rN ) d3r2 . . . d3rN .
E[γ] = ∫ d3r′d3rδ(r− r′)
[ −∇
2
2
] γ(r, r′) + Eext[γ] + Eee[γ]
S. Sharma Reduced Density Matrix Functional Theory
Reduced density matrix functional theory
Density
ρ(r) = N ∫
Ψ(r, r2, . . . , rN )Ψ∗(r, r2, . . . , rN ) d3r2 . . . d3rN .
E[ρ] = T [ρ] + Eext[ρ] + Eee[ρ]
One-reduced density matrix (1-RDM)
γ(r, r′) = N ∫
Ψ(r, r2, . . . , rN )Ψ∗(r′, r2, . . . , rN ) d3r2 . . . d3rN .
E[γ] = ∫ d3r′d3rδ(r− r′)
[ −∇
2
2
] γ(r, r′) + Eext[γ] + Eee[γ]
S. Sharma Reduced Density Matrix Functional Theory
Reduced density matrix functional theory
Gilbert’s Theorem [PRB 12, 2111 (1975)] (HK for 1-RDM)
Total energy is a unique functional E[γ] of the 1-RDM Ground-state energy can be calculated by minimizing
F [γ] ≡ E[γ]− µ [∫
γ(r, r) d3r −N ]
Must ensure that γ is N -representable! Proof by A. J. Coleman [RMP 35, 668 (1963)]
S. Sharma Reduced Density Matrix Functional Theory
Reduced density matrix functional theory
One-Reduced density matrix functional theory (1-RDMFT) requires solving for functions in 6 coordinates: γ(r, r′)
Diagonalising the density matrix gives the natural orbitals and occupation numbers
γ(r, r′) = ∑ i
niφi(r)φ∗i (r ′)
∫ γ(r, r′)φi(r′)d3r′ = niφi(r)
S. Sharma Reduced Density Matrix Functional Theory
Set of all ensemble N -representable 1-RDM
Gives the necessary and sufficient N -representability conditions
γ is Hermitian
Tr γ = N 0 ≤ ni ≤ 1, γφi = niφi
S. Sharma Reduced Density Matrix Functional Theory
Set of all ensemble N -representable 1-RDM
Gives the necessary and sufficient N -representability conditions
γ is Hermitian
Tr γ = N 0 ≤ ni ≤ 1, γφi = niφi
S. Sharma Reduced Density Matrix Functional Theory
Set of all ensemble N -representable 1-RDM
Gives the necessary and sufficient N -representability conditions
γ is Hermitian
Tr γ = N 0 ≤ ni ≤ 1, γφi = niφi
S. Sharma Reduced Density Matrix Functional Theory
Set of all ensemble N -representable 1-RDM
Gives the necessary and sufficient N -representability conditions
γ is Hermitian
Tr γ = N 0 ≤ ni ≤ 1, γφi = niφi
S. Sharma Reduced Density Matrix Functional Theory
Reduced density matrix functional theory
Three major differences from DFT
Exact kinetic-energy functional is known explicitly
T [γ] = −1 2
∫ δ(r− r′)∇2γ(r, r′) d3r d3r′
so no kinetic energy in Exc (≡ Eee − EH) There exists no Kohn-Sham system reproducing the exact γ (because γKS is idempotent)
There exists no variational equation
δF [γ] γ(r, r′)
= 0
S. Sharma Reduced Density Matrix Functional Theory
No simple variational equation
N -representability condition 0 ≤ ni ≤ 1 leads to border minimum
One can still minimise but δF [γ]δγ(r,r′) 6= 0 at minimum
S. Sharma Reduced Density Matrix Functional Theory
Exchange-correlation functionals (T → 0)
Define F [γ] ≡ inf
Γ (2) N →γ
Tr {Γ(2)N (T + Vee)}
Exc[γ] ≡ F [γ]− T [γ]− EH[γ]
Then
E[γ] = T [γ] + ∫ vext(r) γ(r, r) d3r + EH[γ] + Exc[γ]
Given the exact γ we can compute the exact kinetic energy, Hartree energy and external potential energy explicitly
BUT the exchange-correlation interaction energy is an implicit functional of γ
S. Sharma Reduced Density Matrix Functional Theory
Müller functional, Phys. Rev. Lett. 105A, 446 (1984)
Exc[γ] = − 1 2
∫ γp(r, r′)∗γ1−p(r, r′)
|r− r′| d3r d3r′ (p = 1/2)
γp(r, r′) = ∑ i
npiφ ∗ i (r ′)φi(r)
“Power functional”, Phys. Rev. B 78, R201103 (2008)
Exc[γ] = − 1 2
∫ |γα(r, r′)|2
|r− r′| d3r d3r′ (1/2 ≤ α ≤ 1)
Hartree-Fock functional
Exc[γ] = − 1 2
∫ |γ(r, r′)|2
|r− r′| d3r d3r′
S. Sharma Reduced Density Matrix Functional Theory
Müller functional, Phys. Rev. Lett. 105A, 446 (1984)
Exc[γ] = − 1 2
∫ γp(r, r′)∗γ1−p(r, r′)
|r− r′| d3r d3r′ (p = 1/2)
Γ(r1, r2, r1′, r2′) = ∫
Ψ(r1, r2...rN)Ψ∗(r1′, r2′...rN)dr3...drN
“Power functional”, Phys. Rev. B 78, R201103 (2008)
Exc[γ] = − 1 2
∫ |γα(r, r′)|2
|r− r′| d3r d3r′ (1/2 ≤ α ≤ 1)
Hartree-Fock functional
Exc[γ] = − 1 2
∫ |γ(r, r′)|2
|r− r′| d3r d3r′
S. Sharma Reduced Density Matrix Functional Theory
Müller functional, Phys. Rev. Lett. 105A, 446 (1984)
Exc[γ] = − 1 2
∫ γp(r, r′)∗γ1−p(r, r′)
|r− r′| d3r d3r′ (p = 1/2)
“Power functional”, Phys. Rev. B 78, R201103 (2008)
Exc[γ] = − 1 2
∫ |γα(r, r′)|2
|r− r′| d3r d3r′ (1/2 ≤ α ≤ 1)
Hartree-Fock functional
Exc[γ] = − 1 2
∫ |γ(r, r′)|2
|r− r′| d3r d3r′
S. Sharma Reduced Density Matrix Functional Theory
Correlation energy for atoms and molecules (G2)
(LDA: ∼ 600%, B3LYP: ∼ 300%) S. Sharma Reduced Density Matrix Functional Theory
Lieb’s conjecture for LiH
S. Sharma Reduced Density Matrix Functional Theory
Band gap using chemical potential
∆ ≡ I(N)−A(N) = µ(N + η)− µ(N − η)
S. Sharma Reduced Density Matrix Functional Theory
Band gap for solids
Sharma et al. Phys. Rev. B 78, R201103 (2008)
µ̃(η) has discontinuity at η = 0 with Eg = limη→0+(µ̃(η)− µ̃(−η)) being identical to exact fundamental gap.
In the vicinity of η = 0 one finds a linear behavior
µ̃(η) = µ(η = 0−) + {
clη for η < 0 Eg + crη for η > 0
with cl = 2 ∫ n−(r) |r−r′|d
3rd3r′ and cr = 2 ∫ n+(r) |r−r′|d
3rd3r′
S. Sharma Reduced Density Matrix Functional Theory
Band gap using chemical potential
∆ ≡ I(N)−A(N) = µ(N + η)− µ(N − η)
S. Sharma Reduced Density Matrix Functional Theory
Band gaps for solids
S. Sharma Reduced Density Matrix Functional Theory
Natural-orbital minimisation
E[γ] = E[ni,Φi]
Self-consistent Kohn-Sham calculation is performed (any functional can be used) : ψKSj (r)
1 Natural orbitals are expanded in Kohn-Sham wave functions
ΦRDMi (r) = ∑ j
cij ψ KS j (r)
2 Compute gradients of the total energy w.r.t. cij 3 Use steepest-descent along the gradient cij → cij + λdE/dcij 4 Use Gramm-Schmidt to orthogonalise the natural-orbitals
5 Goto step 1, or exit once convergence is achieved
S. Sharma Reduced Density Matrix Functional Theory
Occupation number minimization
Constraints: ∑
i ni = N and 0 ≤ ni ≤ 1
Define gi(κ) ≡ dE/dni − κ and
g̃i(κ) ≡ { gi(1− ni) gi > 0 gini gi ≤ 0
1 Compute dE/dni 2 Find κ such that
∑ i g̃i(κ) = 0
3 Make change in occupation number: ni → ni + λg̃i(κ), for largest λ which keeps occupancies in [0, 1]
4 Goto step 1, or exit once convergence is achieved
S. Sharma Reduced Density Matrix Functional Theory
Code used: ELK
J. K. Dewhurst, S. Sharma and E. K. U. Gross
Code available at: http://elk.sourceforge.net/
S. Sharma Reduced Density Matrix Functional Theory
Summary
RDMFT for periodic solids is implemented within a FP-LAPW code.
Produces very good results for wide range of systems.
New algorithm for minimisation of energy with respect to occupation numbers.
S. Sharma Reduced Density Matrix Functional Theory
Atomisation energy for molecules