Reconfigurable CMOS LNA for Software Defined Radio Using ...masu- · Reconfigurable CMOS LNA for...

1
Hirotaka Sugawara, Yoshiaki Yoshihara, Kenichi Okada, and Kazuya Masu Precision and Intelligence Laboratory, Tokyo Institute of Technology, Japan Reconfigurable CMOS LNA for Software Defined Radio Using Variable Inductor Background Reconfigurable RF Circuit Multi-band RF front-end Architectures Conclusion Tunable LNA L1 50Ω 50Ω Vgs=0.65 V Vdd=1.8 V L2 L=0.2 μm W=5 μm m=60 L=0.2 μm W=5 μm m=60 Pin Pout Wireles s Standards n Mobile phone 900MHz, 1.5GHz, 2GHz (+ 800MHz, 1.7GHz, 1.9GHz for the new system) (+ 800MHz, 900MHz, 1.8GHz, 1.9GHz for GSM) n WLAN 802.11b/g, Bluetooth 2.4GHz n WLAN 802.11a/n 5GHz n GPS 1.2GHz/1.5GHz n DTV 470 MHz 770 MHz Purpos e PA LNA LO LPF DAC ADC SW RF Front-End I Q MIX MIX LPF Baseband LSI Proposed Concept To provide multiple functions to circuits Multi-function Reconfigurable RF Circuit Design K. Okada, et al., in ASP- DAC, Jan. 2005, pp.683-686. A multi-band/mode circuit for wireless communication chips Self-compensation Si CMOS Technology provide Wireless Communication Circuits Realiza tion of Si CMOS RF circuits Reconfigurable RF Circuit RF circuit is controlled by digital circuit Architectu re Proposed Archi tecture Variable Inductor Variable Inductor The inductance continuously varies depending on the position of the metal plate. The metal plate shields the magnetic flux which penetrate the inductor. h Spiral Inductor Metal Plate consists of a planar-type spiral inductor and a metal plate. MEMS Parallel Plate actuator V. M. Lubecke, and J. -C. Chiao: The IEEE 4 th Int. Conf. on Telecommunications in Modern Satellite, Cable and Broadcasting Services, 1999 p. 1 stationary electrode movable electrode Moving system is realized to use MEMS actuator Measu rement Turns : 3 Line width : 10 μm Line space : 1.2 μm Outer diameter : 300 μm 0.9 pF 0.6 pF 0.18 m m M5 CMOS Process 1.28 mm 0.97 mm Variable Characteri sti c 0 5 10 15 20 Frequency [GHz] PG [dB] -20 -10 20 10 @ 1.9 GHz PG=14.2 dB Pin=-27 dBm 0 0 5 10 15 20 Frequency [GHz] -100 -60 -20 -40 S12 [dB] @ 1.9 GHz PG=-31.0 dB Pin=-27 dBm -80 -30 -20 -10 0 5 Pin [dBm] -5 5 Pout [dBm] 0 -10 -15 0 5 10 15 20 Frequency [GHz] S22 [dB] S11 [dB] -20 -10 5 0 -5 S11 S22 S22 S11 1 2 3 4 5 Frequency [GHz] NF [dB] 10 4 8 6 @ 1.9 GHz NF=5.2 dB -15 -5 -15 -25 @ 1.9 GHz S11=-11.0 dB S22=-12.7 dB Pin=-27 dBm Freq.=1.9 GHz Input P1dB=-15.8 dBm 1.898 1.899 1.901 1.903 Frequency [GHz] Amplitude [dB] -140 1.900 1.902 -120 -80 -40 0 -60 -20 -100 -52.5 dBm @ 1.899 GHz -13.1 dBm @ 1.900 GHz -13.1 dBm @ 1.901 GHz -53.2 dBm @ 1.902 GHz Power= -27 dBm IIP3 =-7.2 dBm high density integration high frequency performance Low fabrication cost Wireless communication standards use several frequency bands. Multi standard Baseband Software Defined Radio (SDR) It is necessary for global roaming using SDR to realize Multi-band RF front-end 400 MHz-6 GHz To realize Multi-band RF front-end To provide a compensating mechanism Process variations, Modeling error, Temperature etc. Control Digital Circuit Proposed Tunable LNA Multi-band Down convertor Wide-band Antenna f Gain ... Tuning LNA Down convertor LNA Down convertor f ... Gain Using some signal paths for each frequency band It needs large chip area to extend the number of communication standards. Wide-band LNA Gain Multi-band Down convertor Wide-band Antenna f Distributed amplifier needs large chip area and power consumption. Using Distribute amplifier multi-band LNA using resonator Multi-band Down convertor Wide-band Antenna f Gain ... The approach require large chip area due to many resonators. Using some input resonators Wide-tunable CMOS LNA is realized by the variable inductor. The proposed LNA achieves wide-tuning range with narrow-band gain and can be used for reconfigurable RF front-end. Turns : 3 Line width : 20 μm Line space : 1.2 μm Outer diameter : 400 μm L 1 L 2 L 1 L 2 Q 4.5 3.5 3.0 4.0 @1.9 GHz Lmax/Lmin=1.5 Height of plate h [mm] 3 L [nH] 0 100 400 6 5 300 200 500 4 Q 4 3 2 Height of plate h [mm] 3 L [nH] 0 100 400 7 5 300 200 500 4 6 @1.9 GHz Lmax/Lmin=2.0 1 Frequency [GHz] 0.1 Q 4 3 2 1 10 0 Decrease in Metal Plate Height 1 Frequency [GHz] 0.1 L [nH] 4 2 10 0 10 8 6 Decrease in Metal Plate Height h=10 μm h=15 μm h=20 μm h=30 μm h=50 μm h=100 μm w/o Metal plate 1 Frequency [GHz] 0.1 Q 4 3 2 1 10 0 Decrease in Metal Plate Height 1 Frequency [GHz] 0.1 L [nH] 4 2 10 0 10 8 6 Decrease in Metal Plate Height L 1 L 2 h=10 μm h=15 μm h=20 μm h=30 μm h=50 μm h=100 μm w/o Metal plate Basic Characteristic Freq. [GHz] V dd [V] I dd [mA] PG [dB] S 22 [dB] S 11 [dB] NF [dB] IIP 3 [dBm] Input P 1dB [dBm] 1.9 1.8 7.4 14.2 -11.0 -12.7 5.2 -15.8 -7.2 V gs [V] 0.65 Summary of Performance 1 2 4 5 Frequency [GHz] PG [dB] 15 5 0 3 10 1 2 3 4 5 Frequency [GHz] NF [dB] 10 4 8 6 h=10 μm h=15 μm h=20 μm h=30 μm h=50 μm h=100 μm w/o Metal Plate Noise Figure (NF) : Shift to higher frequency as metal plate inserts Si CMOS Tunable LNA using the on-chip variable inductors for the SDR The variable ratios of the variable inductors are over 1.5. The proposed LNA achieves PG of over 10 dB from 1.6 GHz to 3.2 GHz. The minimum NF is shifted to higher frequency as inductances vary. This tunable LNA is quite useful for multi-band RF communication system with the reconfigurable RF circuit design. h Spiral Inductor Metal Plate Power Gain (PG) : 15 dB and over 10 dB from 1.6 GHz to 3.2 GHz. Decrease in Metal Plate Height Decrease in Metal Plate Height

Transcript of Reconfigurable CMOS LNA for Software Defined Radio Using ...masu- · Reconfigurable CMOS LNA for...

  • Hirotaka Sugawara, Yoshiaki Yoshihara, Kenichi Okada, and Kazuya MasuPrecision and Intelligence Laboratory, Tokyo Institute of Technology, Japan

    Reconfigurable CMOS LNA for Software Defined Radio Using Variable Inductor

    Background Reconfigurable RF Circuit

    Multi-band RF front-end Architectures

    Conclusion

    Tunable LNA

    L150Ω

    50Ω

    Vgs=0.65 V

    Vdd=1.8 V

    L2

    L=0.2 µmW=5 µmm=60

    L=0.2 µmW=5 µmm=60Pin

    Pout

    Wireless Standardsn Mobile phone 900MHz, 1.5GHz, 2GHz

    (+ 800MHz, 1.7GHz, 1.9GHz for the new system)

    (+ 800MHz, 900MHz, 1.8GHz, 1.9GHz for GSM)

    n WLAN 802.11b/g, Bluetooth 2.4GHz

    n WLAN 802.11a/n 5GHz

    n GPS 1.2GHz/1.5GHzn DTV 470 MHz~770 MHz

    Purpose

    PA

    LNA

    LO

    LPF DAC

    ADC

    SW

    RF Front-End

    I Q

    MIX

    MIX LPF

    Bas

    eban

    d LS

    I

    Proposed Concept

    To provide multiple functions to circuitsMulti-function

    Reconfigurable RF Circuit Design K. Okada, et al., in ASP- DAC, Jan. 2005, pp.683-686.

    A multi-band/mode circuit for wireless communication chips

    Self-compensation

    Si CMOS Technology provide

    Wireless Communication Circuits

    Realization of Si CMOS RF circuits

    Reconfigurable RF Circuit

    ●RF circuit is controlled by digital circuit

    Architecture

    Proposed Architecture

    Variable InductorVariable Inductor

    The inductance continuously varies depending on the position of the metal plate.

    The metal plate shields the magnetic flux whichpenetrate the inductor.

    h

    Spiral Inductor

    Metal Plate

    consists of a planar-type spiral inductor and a metal plate.

    MEMS Parallel Plate actuator

    V. M. Lubecke, and J. -C. Chiao: The IEEE 4th Int. Conf. on Telecommunications in Modern Satellite, Cable and Broadcasting Services, 1999 p. 1stationary electrode

    movable electrode

    Moving system is realized to use MEMS actuator

    Measurement

    Turns : 3Line width : 10 µmLine space : 1.2 µmOuter diameter : 300 µm

    0.9 pF

    0.6 pF

    0.18 µm M5 CMOS Process1.28 mm

    0.97

    mm

    1.28 mm

    0.97

    mm

    Variable Characteristic

    0 5 10 15 20Frequency [GHz]

    PG

    [dB

    ]

    -20

    -10

    20

    10@ 1.9 GHzPG=14.2 dBPin=-27 dBm

    0

    0 5 10 15 20Frequency [GHz]

    -100

    -60

    -20

    -40

    S12

    [dB

    ]

    @ 1.9 GHzPG=-31.0 dBPin=-27 dBm

    -80

    -30 -20 -10 0 5Pin [dBm]

    -5

    5

    Pou

    t[dB

    m] 0

    -10

    -15

    0 5 10 15 20Frequency [GHz]

    S22

    [dB

    ]S

    11[d

    B]

    -20

    -10

    5

    0

    -5

    S11

    S22

    S22 S11

    1 2 3 4 5Frequency [GHz]

    NF

    [dB

    ]

    10

    4

    8

    6

    @ 1.9 GHzNF=5.2 dB

    -15

    -5-15-25

    @ 1.9 GHzS11=-11.0 dBS22=-12.7 dBPin=-27 dBm

    Freq.=1.9 GHzInput P1dB=-15.8 dBm

    1.898 1.899 1.901 1.903Frequency [GHz]

    Am

    plitu

    de [d

    B]

    -1401.900 1.902

    -120

    -80

    -40

    0

    -60

    -20

    -100

    -52.5 dBm @ 1.899 GHz-13.1 dBm @ 1.900 GHz-13.1 dBm @ 1.901 GHz-53.2 dBm @ 1.902 GHz

    Power= -27 dBmIIP3 =-7.2 dBm

    high density integrationhigh frequency performanceLow fabrication cost

    Wireless communication standards use severalfrequency bands.

    Multi standard Baseband

    Software Defined Radio (SDR)

    It is necessary for global roaming using SDRto realize Multi-band RF front-end

    400 MHz-6 GHz

    To realize Multi-band RF front-end

    To provide a compensating mechanismProcess variations, Modeling error, Temperature etc.

    Control Digital Circuit

    Proposed Tunable LNA

    Multi-band Down convertor

    Wide-band Antenna

    f

    Gai

    n ...

    TuningLNA Down convertor

    ・・

    LNA Down convertorf...

    Gai

    nUsing some signal paths for each frequency band

    It needs large chip area to extend the number of communication standards.

    Wide-band LNA

    Gai

    n

    Multi-band Down convertor

    Wide-band Antenna

    f

    Distributed amplifier needs large chip area and power consumption.

    Using Distribute amplifier

    multi-band LNA using resonator

    Multi-band Down convertor

    Wide-band Antenna

    f

    Gai

    n ...

    The approach require large chip area due to many resonators.

    Using some input resonatorsWide-tunable CMOS LNA is realized by the variable inductor.

    The proposed LNA achieves wide-tuning range with narrow-band gain and can be used for reconfigurable RF front-end.

    Turns : 3Line width : 20 µmLine space : 1.2 µmOuter diameter : 400 µm

    L1 L2

    L1 L2

    Q

    4.5

    3.5

    3.0

    4.0

    @1.9 GHzLmax/Lmin=1.5

    Height of plate h [µm]

    3

    L [n

    H]

    0 100 400

    6

    5

    300200 500

    4

    Q

    4

    3

    2

    Height of plate h [µm]

    3

    L [n

    H]

    0 100 400

    7

    5

    300200 500

    4

    6

    @1.9 GHzLmax/Lmin=2.0

    1Frequency [GHz]

    0.1

    Q

    4

    3

    2

    1

    100

    Decrease in Metal Plate Height

    1Frequency [GHz]

    0.1

    L [n

    H]

    4

    2

    100

    10

    8

    6

    Decrease in Metal Plate Height

    h=10 µmh=15 µmh=20 µmh=30 µm

    h=50 µmh=100 µmw/o Metal plate

    1Frequency [GHz]

    0.1

    Q

    4

    3

    2

    1

    100

    Decrease in Metal Plate Height

    1Frequency [GHz]

    0.1

    L [n

    H]

    4

    2

    100

    10

    8

    6

    Decrease in Metal Plate Height

    L1

    L2h=10 µmh=15 µmh=20 µmh=30 µm

    h=50 µmh=100 µmw/o Metal plate

    Basic Characteristic

    Freq. [GHz]Vdd [V]

    Idd [mA]PG [dB]

    S22 [dB]S11 [dB]

    NF [dB]

    IIP3 [dBm]Input P1dB [dBm]

    1.91.8

    7.414.2-11.0-12.75.2

    -15.8-7.2

    Vgs [V] 0.65

    Summary of Performance

    1 2 4 5Frequency [GHz]

    PG

    [dB

    ]

    15

    5

    03

    10

    1 2 3 4 5Frequency [GHz]

    NF

    [dB

    ]

    10

    4

    8

    6

    h=10 µmh=15 µmh=20 µmh=30 µmh=50 µmh=100 µmw/o Metal Plate

    Noise Figure (NF) : Shift to higher frequency          as metal plate inserts

    Si CMOS Tunable LNA using the on-chip variable inductors for the SDR■The variable ratios of the variable inductors are over 1.5. ■The proposed LNA achieves PG of over 10 dB from 1.6 GHz to 3.2 GHz. ■The minimum NF is shifted to higher frequency as inductances vary.

    This tunable LNA is quite useful for multi-band RF communication system with the reconfigurable RF circuit design.

    h

    Spiral Inductor

    Metal Plate

    Power Gain (PG) : 15 dB and over 10 dB         from 1.6 GHz to 3.2 GHz.

    Decrease in Metal Plate Height

    Decrease in Metal Plate Height