Reconfigurable CMOS LNA for Software Defined Radio Using ...masu- Reconfigurable CMOS LNA for...

download Reconfigurable CMOS LNA for Software Defined Radio Using ...masu- Reconfigurable CMOS LNA for Software

If you can't read please download the document

  • date post

    18-Feb-2021
  • Category

    Documents

  • view

    0
  • download

    0

Embed Size (px)

Transcript of Reconfigurable CMOS LNA for Software Defined Radio Using ...masu- Reconfigurable CMOS LNA for...

  • Hirotaka Sugawara, Yoshiaki Yoshihara, Kenichi Okada, and Kazuya Masu Precision and Intelligence Laboratory, Tokyo Institute of Technology, Japan

    Reconfigurable CMOS LNA for Software Defined Radio Using Variable Inductor

    Background Reconfigurable RF Circuit

    Multi-band RF front-end Architectures

    Conclusion

    Tunable LNA

    L150Ω

    50Ω

    Vgs=0.65 V

    Vdd=1.8 V

    L2

    L=0.2 µm W=5 µm m=60

    L=0.2 µm W=5 µm m=60Pin

    Pout

    Wireless Standards n Mobile phone 900MHz, 1.5GHz, 2GHz

    (+ 800MHz, 1.7GHz, 1.9GHz for the new system)

    (+ 800MHz, 900MHz, 1.8GHz, 1.9GHz for GSM)

    n WLAN 802.11b/g, Bluetooth 2.4GHz

    n WLAN 802.11a/n 5GHz

    n GPS 1.2GHz/1.5GHz n DTV 470 MHz~770 MHz

    Purpose

    PA

    LNA

    LO

    LPF DAC

    ADC

    SW

    RF Front-End

    I Q

    MIX

    MIX LPF

    B as

    eb an

    d LS

    I

    Proposed Concept

    To provide multiple functions to circuitsMulti-function

    Reconfigurable RF Circuit Design K. Okada, et al., in ASP- DAC, Jan. 2005, pp.683-686.

    A multi-band/mode circuit for wireless communication chips

    Self-compensation

    Si CMOS Technology provide

    Wireless Communication Circuits

    Realization of Si CMOS RF circuits

    Reconfigurable RF Circuit

    ●RF circuit is controlled by digital circuit

    Architecture

    Proposed Architecture

    Variable Inductor Variable Inductor

    The inductance continuously varies depending on the position of the metal plate.

    The metal plate shields the magnetic flux which penetrate the inductor.

    h

    Spiral Inductor

    Metal Plate

    consists of a planar-type spiral inductor and a metal plate.

    MEMS Parallel Plate actuator

    V. M. Lubecke, and J. -C. Chiao: The IEEE 4th Int. Conf. on Telecommunications in Modern Satellite, Cable and Broadcasting Services, 1999 p. 1 stationary electrode

    movable electrode

    Moving system is realized to use MEMS actuator

    Measurement

    Turns : 3 Line width : 10 µm Line space : 1.2 µm Outer diameter : 300 µm

    0.9 pF

    0.6 pF

    0.18 µm M5 CMOS Process 1.28 mm

    0. 97

    m m

    1.28 mm

    0. 97

    m m

    Variable Characteristic

    0 5 10 15 20 Frequency [GHz]

    P G

    [d B

    ]

    -20

    -10

    20

    10 @ 1.9 GHz PG=14.2 dB Pin=-27 dBm

    0

    0 5 10 15 20 Frequency [GHz]

    -100

    -60

    -20

    -40

    S 12

    [d B

    ]

    @ 1.9 GHz PG=-31.0 dB Pin=-27 dBm

    -80

    -30 -20 -10 0 5 Pin [dBm]

    -5

    5

    P ou

    t[ dB

    m ] 0

    -10

    -15

    0 5 10 15 20 Frequency [GHz]

    S 22

    [d B

    ] S

    11 [d

    B ]

    -20

    -10

    5

    0

    -5

    S11

    S22

    S 22 S 11

    1 2 3 4 5 Frequency [GHz]

    N F

    [d B

    ]

    10

    4

    8

    6

    @ 1.9 GHz NF=5.2 dB

    -15

    -5-15-25

    @ 1.9 GHz S11=-11.0 dB S22=-12.7 dB Pin=-27 dBm

    Freq.=1.9 GHz Input P1dB=-15.8 dBm

    1.898 1.899 1.901 1.903 Frequency [GHz]

    A m

    pl itu

    de [d

    B ]

    -140 1.900 1.902

    -120

    -80

    -40

    0

    -60

    -20

    -100

    -52.5 dBm @ 1.899 GHz -13.1 dBm @ 1.900 GHz -13.1 dBm @ 1.901 GHz -53.2 dBm @ 1.902 GHz

    Power= -27 dBm IIP3 =-7.2 dBm

    high density integration high frequency performance Low fabrication cost

    Wireless communication standards use several frequency bands.

    Multi standard Baseband

    Software Defined Radio (SDR)

    It is necessary for global roaming using SDR to realize Multi-band RF front-end

    400 MHz-6 GHz

    To realize Multi-band RF front-end

    To provide a compensating mechanism Process variations, Modeling error, Temperature etc.

    Control Digital Circuit

    Proposed Tunable LNA

    Multi-band Down convertor

    Wide-band Antenna

    f

    G ai

    n ...

    TuningLNA Down convertor

    ・ ・

    LNA Down convertor f...

    G ai

    n Using some signal paths for each frequency band

    It needs large chip area to extend the number of communication standards.

    Wide-band LNA

    G ai

    n

    Multi-band Down convertor

    Wide-band Antenna

    f

    Distributed amplifier needs large chip area and power consumption.

    Using Distribute amplifier

    multi-band LNA using resonator

    Multi-band Down convertor

    Wide-band Antenna

    f

    G ai

    n ...

    The approach require large chip area due to many resonators.

    Using some input resonators Wide-tunable CMOS LNA is realized by the variable inductor.

    The proposed LNA achieves wide-tuning range with narrow-band gain and can be used for reconfigurable RF front-end.

    Turns : 3 Line width : 20 µm Line space : 1.2 µm Outer diameter : 400 µm

    L1 L2

    L1 L2

    Q

    4.5

    3.5

    3.0

    4.0

    @1.9 GHz Lmax/Lmin=1.5

    Height of plate h [µm]

    3

    L [n

    H ]

    0 100 400

    6

    5

    300200 500

    4

    Q

    4

    3

    2

    Height of plate h [µm]

    3

    L [n

    H ]

    0 100 400

    7

    5

    300200 500

    4

    6

    @1.9 GHz Lmax/Lmin=2.0

    1 Frequency [GHz]

    0.1

    Q

    4

    3

    2

    1

    10 0

    Decrease in Metal Plate Height

    1 Frequency [GHz]

    0.1

    L [n

    H ]

    4

    2

    10 0

    10

    8

    6

    Decrease in Metal Plate Height

    h=10 µm h=15 µm h=20 µm h=30 µm

    h=50 µm h=100 µm w/o Metal plate

    1 Frequency [GHz]

    0.1

    Q

    4

    3

    2

    1

    10 0

    Decrease in Metal Plate Height

    1 Frequency [GHz]

    0.1

    L [n

    H ]

    4

    2

    10 0

    10

    8

    6

    Decrease in Metal Plate Height

    L1

    L2 h=10 µm h=15 µm h=20 µm h=30 µm

    h=50 µm h=100 µm w/o Metal plate

    Basic Characteristic

    Freq. [GHz] Vdd [V]

    Idd [mA] PG [dB]

    S22 [dB] S11 [dB]

    NF [dB]

    IIP3 [dBm] Input P1dB [dBm]

    1.9 1.8

    7.4 14.2 -11.0 -12.7 5.2

    -15.8 -7.2

    Vgs [V] 0.65

    Summary of Performance

    1 2 4 5 Frequency [GHz]

    P G

    [d B

    ]

    15

    5

    0 3

    10

    1 2 3 4 5 Frequency [GHz]

    N F

    [d B

    ]

    10

    4

    8

    6

    h=10 µm h=15 µm h=20 µm h=30 µm h=50 µm h=100 µm w/o Metal Plate

    Noise Figure (NF) : Shift to higher frequency          as metal plate inserts

    Si CMOS Tunable LNA using the on-chip variable inductors for the SDR ■The variable ratios of the variable inductors are over 1.5. ■The proposed LNA achieves PG of over 10 dB from 1.6 GHz to 3.2 GHz. ■The minimum NF is shifted to higher frequency as inductances vary.

    This tunable LNA is quite useful for multi-band RF communication system with the reconfigurable RF circuit design.

    h

    Spiral Inductor

    Metal Plate

    Power Gain (PG) : 15 dB and over 10 dB         from 1.6 GHz to 3.2 GHz.

    Decrease in Metal Plate Height

    Decrease in Metal Plate Height