Ramanujan’s theories of elliptic functions to alternative...

59
Ramanujan’s theories of elliptic functions to alternative bases, and beyond. Shaun Cooper Massey University, Auckland Askey 80 Conference. December 6, 2013.

Transcript of Ramanujan’s theories of elliptic functions to alternative...

Page 1: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Ramanujan’s theories of elliptic functions toalternative bases, and beyond.

Shaun Cooper

Massey University, Auckland

Askey 80 Conference. December 6, 2013.

Page 2: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Outline

1 Sporadic sequences

2 Background: classical theory

3 Ramanujan’s alternative theories

4 Beyond Ramanujan’s alternative theories

Page 3: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Roger Apery, 1916–1994

Classical results∞�

n=1

1

n2=

π2

6,

∞�

n=1

1

n4=

π4

90,

∞�

n=1

1

n6=

π6

945, · · ·

Apery’s theorem (1978)

ζ(3) :=∞�

n=1

1

n3is irrational

Apery introduced two sequences of integers: one to prove ζ(2) �∈ Q(well-known) and the other to prove ζ(3) �∈ Q (new).

Page 4: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Apery’s numbers used to prove ζ(2) �∈ Q

(k + 1)2sk+1 = (11k2 + 11k + 3)sk + k2sk−1, s0 = 1

The numbers sk are integers—not obvious.

Apery’s numbers used to prove ζ(3) �∈ Q

(k + 1)3tk+1 = (2k + 1)(17k2 + 17k + 5)tk − k3tk−1, t0 = 1

The numbers tk are integers—not obvious.

Page 5: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Apery’s numbers used to prove ζ(2) �∈ Q

(k + 1)2sk+1 = (11k2 + 11k + 3)sk + k2sk−1, s0 = 1

sk =k�

j=0

�k

j

�2�k + j

j

Proof: by the method of creative telescoping. Now, automated.

The numbers sk are integers—now obvious from the binomial sum.

Page 6: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

F. Beukers, 1983

(k + 1)2sk+1 = (11k2 + 11k + 3)sk + k2sk−1, s0 = 1

z =∞�

k=0

skxk

x = q∞�

j=1

(1− q5j−4)5(1− q5j−1)5

(1− q5j−3)5(1− q5j−2)5= r5(q)

5

z =∞�

j=1

(1− qj)2

(1− q5j−4)5(1− q5j−1)5

1. Another proof that sk is an integer2. r5(q): the Rogers-Ramanujan continued fraction3. How to find other examples?

Page 7: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Sporadic sequences

Franel, 1894

(k + 1)2sk+1 = (7k2 + 7k + 2)sk + 8k2sk−1, s0 = 1

sk =k�

j=0

�k

j

�3

Apery, 1978

(k + 1)2sk+1 = (11k2 + 11k + 3)sk + k2sk−1, s0 = 1

sk =k�

j=0

�k

j

�2�k + j

j

Zagier, 1998, 2009

(k + 1)2sk+1 = (ak2 + ak + b)sk + ck2sk−1, s0 = 1

Page 8: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

(k + 1)2sk+1 = (ak2 + ak + b)sk + ck2sk−1, s0 = 1

(a, b, c) s(k)

(11, 3, 1)�

j

�k

j

�2�k + j

j

(−17,−6,−72)�

j ,�

(−8)k−j

�k

j

��j

�3

(10, 3,−9)�

j

�k

j

�2�2jj

(7, 2, 8)�

j

�k

j

�3

(12, 4,−32)�

j

4k−2j

�k

2j

��2j

j

�2

(−9,−3,−27)�

j

(−3)k−3j

�k

j

��k − j

j

��k − 2j

j

Page 9: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Analogues of Beukers’ result

(k + 1)2sk+1 = (7k2 + 7k + 2)sk + 8k2sk−1, s0 = 1

z =∞�

k=0

skxk =

∞�

k=0

k�

j=0

�k

j

�3

xk

x = q∞�

j=1

(1− qj)3(1− q6j)9

(1− q2j)3(1− q3j)9= rc(q)

3

z =∞�

j=1

(1− q2j)(1− q3j)6

(1− qj)2(1− q6j)3

1. rc(q) is Ramanujan’s cubic continued fraction2. Similar results hold for Zagier’s other examples

Page 10: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Apery’s numbers used to prove ζ(2) �∈ Q

(k + 1)2sk+1 = (11k2 + 11k + 3)sk + k2sk−1, s0 = 1

1. Three-term recurrence relation2. Coefficients are polynomials of degree 23. Zagier’s sporadic sequences

(k + 1)2sk+1 = (ak2 + ak + b)sk + ck2sk−1, s0 = 1

Apery’s numbers used to prove ζ(3) �∈ Q

(k + 1)3tk+1 = (2k + 1)(17k2 + 17k + 5)tk − k3tk−1, t0 = 1

1. Three-term recurrence relation2. Coefficients are polynomials of degree 3

Page 11: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

T. Sato, Abstract for Math. Soc. Japan, March 2002

(k + 1)3tk+1 = (2k + 1)(17k2 + 17k + 5)tk − k3tk−1, t0 = 1

x = q∞�

j=1

(1− qj)12(1− q6j)12

(1− q2j)12(1− q3j)12

(k+1)3tk+1 = −(2k+1)(11k2+11k+5)tk −125k3tk−1, t0 = 1

Analogues of

1

π=

2√2

9801

∞�

k=0

�2k

k

�2�4k2k

�(1103 + 26390k)

3964k.

H. H. Chan and coauthors, series of papers

Page 12: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Apery numbers and modular forms

f (5) :=5P(q5)− P(q)

4

=∞�

j=0

�2j

j

��j�

k=0

�j

k

�2�j + k

k

���η21η

25

f (5)

�2j

f (6) :=30P(q6)− 3P(q3) + 2P(q2)− 5P(q)

24

=∞�

j=0

�j�

k=0

�j

k

�2�j + k

k

�2��

η1η2η3η6f (6)

�2j

ηn = qn/24∞�

j=1

(1− qnj), P(q) = 1− 24∞�

j=1

jqj

1− qj

Page 13: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Outline

1 Sporadic sequences

2 Background: classical theory

3 Ramanujan’s alternative theories

4 Beyond Ramanujan’s alternative theories

Page 14: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Jacobi, 1829

x =

∞�

n=−∞q(n+

12 )

2

∞�

n=−∞qn

2

4

, |q| < 1

Figure: Graph of x versus q

x(0) = 0

x(1) = 1dx

dq> 0

dx

dq

����q=0

= 16

Page 15: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Hypergeometric function

(a)n = a(a+ 1)(a+ 2) · · · (a+ n − 1), n ∈ Z+; (a)0 = 1

2F1(a, b; c ; x) =∞�

n=0

(a)n(b)n(c)nn!

xn

3F2(a, b, c ; d , e; x) =∞�

n=0

(a)n(b)n(c)n(d)n(e)nn!

xn

0F0(−;−; x) =∞�

n=0

1

n!xn

1F0(a;−; x) =∞�

n=0

(a)nn!

xn

Page 16: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Jacobi’s inversion formula, 1829

x =

∞�

n=−∞q(n+

12 )

2

∞�

n=−∞qn

2

4

, q = exp

�−π

2F1(12 ,

12 ; 1; 1− x)

2F1(12 ,

12 ; 1; x)

Figure: Graph of x versus q

x(0) = 0

x(1) = 1

x(e−π) = 1/2

x(e−πt) + x(e−π/t) = 1, t > 0

Page 17: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Jacobi’s inversion formula, 1829

x =

∞�

n=−∞q(n+

12 )

2

∞�

n=−∞qn

2

4

, q = exp

�−π

2F1(12 ,

12 ; 1; 1− x)

2F1(12 ,

12 ; 1; x)

Figure: Graph of x versus q

z = 2F1(1

2,1

2; 1; x) =

� ∞�

n=−∞qn

2

�2

qdx

dq= z2x(1− x)

Page 18: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Squares of hypergeometric functions

0F0 (−;−; x)2 = (ex)2 = 0F0 (−;−; 2x)

1F0 (a;−; x)2 =�(1− x)−a

�2= 1F0 (2a;−; x)

2F1 (a, b; c ; x)2 =

Page 19: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Clausen’s identity (1828)

Clausen’s identity

2F1

�1

2+ �,

1

2− �; 1; x

�2

= 3F2

�1

2+ �,

1

2− �,

1

2; 1, 1; 4x(1− x)

Clausen + Jacobi� ∞�

n=−∞qn

2

�4

= 3F2

�1

2,1

2,1

2; 1, 1; 4x(1− x)

After some manipulations (this expression generalizes)

f (4) :=4P(q4)− P(q)

3=

∞�

j=0

�2j

j

�3� η41η44

η42 f (4)

�2j

Page 20: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Aside: Jacobi’s sum of four squares theorem

� ∞�

n=−∞qn

2

�4

= 1 + 8∞�

j=14�j

jqj

1− qj

#�x21 + x22 + x23 + x24 = n, x1, x2, x3, x4 ∈ Z

�= 8

d|n4�d

d

Corollary (Lagrange) Every positive integer is a sum of foursquares.

#�x21 + x22 + x23 + x24 = n

�> 0

Page 21: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Another aside: Ramanujan (1914)

1

π=

1

16

∞�

j=0

�2j

j

�3 (42j + 5)

212j

Page 22: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Outline

1 Sporadic sequences

2 Background: classical theory

3 Ramanujan’s alternative theories

4 Beyond Ramanujan’s alternative theories

Page 23: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Ramanujan (1914)There are similar theories when

q = exp

�−π

z(1− x)

z(x)

�, z(x) = 2F1

�1

2,1

2; 1; x

is replaced by any of

q1 = exp

�−π

√2z1(1− x)

z1(x)

�, z1(x) = 2F1

�1

4,3

4; 1; x

q2 = exp

�− 2π√

3

z2(1− x)

z2(x)

�, z2(x) = 2F1

�1

3,2

3; 1; x

q3 = exp

�−2π

z3(1− x)

z3(x)

�, z3(x) = 2F1

�1

6,5

6; 1; x

Page 24: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Ramanujan’s “alternative theories” of elliptic functions

Ramanujan (1914)

q = exp

�− 2π√

3

2F1�13 ,

23 ; 1; 1− x

2F1�13 ,

23 ; 1; x

��

J. M. Borwein and P. B. Borwein (1991)

x =

∞�

m=−∞

∞�

n=−∞q(m+1

3 )2+(m+1

3 )(n+13 )+(n+1

3 )2

∞�

m=−∞

∞�

n=−∞qm

2+mn+n2

3

Page 25: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Ramanujan’s “alternative theories” of elliptic functions

q = exp

�− 2π√

3

2F1�13 ,

23 ; 1; 1− x

2F1�13 ,

23 ; 1; x

��

Figure: Graph of x versus q

x(0) = 0

x(1) = 1

x(e−2π/√3) = 1/2

Page 26: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Ramanujan’s “alternative theories” of elliptic functions

q = exp

�− 2π√

3

2F1�13 ,

23 ; 1; 1− x

2F1�13 ,

23 ; 1; x

��

Figure: Graph of x versus q

z = 2F1

�1

3,2

3; 1; x

=∞�

m=−∞

∞�

n=−∞qm

2+mn+n2

qdx

dq= z2x(1− x)

Page 27: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Ramanujan’s “alternative theories” of elliptic functions

Ramanujan

pp. 257–262, second notebook

27 Feb 1913, second letter to G. H. Hardy

1914 paper “Modular equations and approximations to 1/π”17 series for 1/π

Mordell (1927), Watson (1931)

“It is unfortunate that Ramanujan has not developed in detailthe corresponding theories...”

“There are developments of functions analogous to ellipticfunctions which I have not seen elsewhere...”

Fricke (1916)

Inversion formula for 2F1(16 ,

56 ; 1; x)

Page 28: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Ramanujan’s “alternative theories” of elliptic functions

K. Venkatachaliengar (1988, republished 2012)

Initial investigations into the “alternative theories”

J. M. Borwein and P. B. Borwein (1987–1994)

A book and a series of papers

Proved all 17 of Ramanujan’s series for 1/π

Discovered the cubic theta function��

qm2+mn+n2

Berndt, Bhargava and Garvan (1995)

Proved all of the results on pp. 257–262 of Ramanujan’s secondnotebook. (Trans. Amer. Math. Soc., 82 pages)

Page 29: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Ramanujan’s “alternative theories” of elliptic functions

H. H. Chan (1998)

The 2F1(13 ,

23 ; 1; x) theory

Berndt, Chan and Liaw (2001)

The 2F1(14 ,

34 ; 1; x) theory

K. S. Williams (2004)

The 2F1(13 ,

23 ; 1; x) theory

C., (2009)

A unified treatment for all four theories

D. Schultz (2013)

Cubic theory

Page 30: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Example of a modular form

Eisenstein series

E2n(τ) =�

(j ,k) �=(0,0)

1

(j + kτ)2n, n = 2, 3, . . . , Im(τ) > 0

Transformations

E2n(τ + 1) = E2n(τ)

E2n

�−1

τ

�= τ2nE2n(τ)

E2n is a modular form of weight 2n

E2n

�aτ + b

cτ + d

�= (cτ + d)2nE2n(τ)

for all integers a, b, c and d with ad − bc = 1.

Page 31: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

The effect of scaling

Suppose

f

�aτ + b

cτ + d

�= (cτ + d)nf (τ)

for all integers a, b, c and d with ad − bc = 1.

Let m be a positive integer and let g(τ) = f (mτ). Then

g

�aτ + b

cτ + d

�= (cτ + d)ng(τ)

for all integers a, b, c and d with ad − bc = 1, provided inaddition c ≡ 0 (mod m).

Page 32: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Congruence subgroups

The modular group

Γ =

��a bc d

����� a, b, c , d ∈ Z, ad − bc = 1

Congruence subgroup

Γ0(m) =

��a bc d

�∈ Γ

���� c ≡ 0 (mod m)

Modular form

A function f is a modular form of weight n and level m if

f

�aτ + b

cτ + d

�= (cτ + d)nf (τ) for all

�a bc d

�∈ Γ0(m).

Page 33: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Examples of modular forms

Suppose q = exp(2πiτ) so Im(τ) > 0 ⇐⇒ |q| < 1

Let P(τ) = 1− 24∞�

n=1

nqn

1− qnQ(τ) = 1 + 240

∞�

n=1

n3qn

1− qn

P�

aτ+bcτ+d

�= (cτ + d)2P(τ)− πic(cτ + d).

P(τ) is not a modular form

mP(mτ)− P(τ) is a modular form of weight 2 and level m

Q(τ) is a modular form of weight 4 (and level 1)

Page 34: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Ramanujan’s alternative theories of elliptic functions

z41 = Q(τ)

z22 = 2P(2τ)− P(τ)

z23 =3P(3τ)− P(τ)

2

z24 =4P(4τ)− P(τ)

3

z1 = 2F1 ( 16 ,

56 ;1;x1)

z2 = 2F1 ( 14 ,

34 ;1;x2)

z3 = 2F1 ( 13 ,

23 ;1;x3)

z4 = 2F1 ( 12 ,

12 ;1;x4)

qdxmdq

= z2mxm(1− xm), xm(e−2π/

√m) =

1

2

Page 35: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

A common way of viewing all 4 theories

f (4) :=4P(q4)− P(q)

3=

∞�

j=0

�2j

j

�3� η41η44

η42 f (4)

�2j

f (3) :=3P(q3)− P(q)

2=

∞�

j=0

�2j

j

�2�3jj

��η21η

23

f (3)

�3j

f (2) := 2P(q2)− P(q) =∞�

j=0

�2j

j

�2�4j2j

��η21η

22

f (2)

�4j

f (1) := Q(q)1/2 =∞�

j=0

�2j

j

��3j

j

��6j

3j

��η41f (1)

�6j

P(q) = 1− 24∞�

j=1

jqj

1− qj, Q(q) = 1 + 240

∞�

j=1

j3qj

1− qj

ηm = qm/24∞�

j=1

(1− qmj)

Page 36: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Outline

1 Sporadic sequences

2 Background: classical theory

3 Ramanujan’s alternative theories

4 Beyond Ramanujan’s alternative theories

Page 37: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

F. Beukers, 1983

(k + 1)2sk+1 = (11k2 + 11k + 3)sk + k2sk−1, s0 = 1

z =∞�

k=0

skxk

x = q∞�

j=1

(1− q5j−4)5(1− q5j−1)5

(1− q5j−3)5(1− q5j−2)5= r5(q)

5

z =∞�

j=1

(1− qj)2

(1− q5j−4)5(1− q5j−1)5

How does it fit in with Jacobi and Ramanujan’s theories?

Page 38: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Analogues of Clausen’s formula

Chan, Tanigawa, Yang and Zudilin (2011): Clausen 1

(1 + cw2)

∞�

j=0

ujwj

2

=∞�

j=0

�2j

j

�uj

�w(1− aw − cw2)

(1 + cw2)2

�j

Almkvist, van Straten and Zudilin (2011): Clausen 2

(1− aw − cw2)

∞�

j=0

ujwj

2

=∞�

j=0

tj

�w

1− aw − cw2

�j

(j + 1)2uj+1 = (aj2 + aj + b)uj + cj2uj−1

(j + 1)3tj+1 = −(2j + 1)(aj2 + aj + a− 2b)tj − (4c + a2)j3tj−1

u0 = t0 = 1

Page 39: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Higher levels: Clausen 1 example

f (4) :=4P(q4)− P(q)

3=

∞�

j=0

�2j

j

�3� η41η44

η42 f (4)

�2j

f (5) :=5P(q5)− P(q)

4

=∞�

j=0

�2j

j

��j�

k=0

�j

k

�2�j + k

k

���η21η

25

f (5)

�2j

sj =j�

k=0

�j

k

�2�j + k

k

(j + 1)2sj+1 = (11j2 + 11j + 3)sj + j2sj−1

R. Apery: ζ(2) �∈ Q

Page 40: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Rogers-Ramanujan continued fraction

5P(q5)− P(q)

4=

∞�

j=0

�2j

j

��j�

k=0

�j

k

�2�j + k

k

���η21η

25

f (5)

�2j

r = r(q) =q1/5

1 +q

1 +q2

1 +q3

1 + · · ·

.

�η21η

25

f (5)

�2

=r5(1− 11r5 − r10)

(1 + r10)2.

Page 41: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Higher levels: Clausen 2 example

f (4) :=4P(q4)− P(q)

3=

∞�

j=0

�2j

j

�3� η41η44

η42 f (4)

�2j

f (6) :=30P(q6)− 3P(q3) + 2P(q2)− 5P(q)

24

=∞�

j=0

�j�

k=0

�j

k

�2�j + k

k

�2��

η1η2η3η6f (6)

�2j

(j+1)3tj+1 = (2j+1)(17j2+17j+5)tj− j3tj−1 : Apery, ζ(3) �∈ Q

P(q) = 1− 24∞�

j=1

jqj

1− qj, ηm = qm/24

∞�

j=1

(1− qmj)

Page 42: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Summary, so far

Levels 1, 2, 3: Ramanujan’s theories to alternative bases

Level 4: Jacobi

Levels 5, 6, 6, 6, 8, 9: Zagier’s sporadic sequences

2F1 functions correspond to weight one modular forms.(e.g., elliptic integral ↔ sum of two squares)

(j + 1)2uj+1 = (aj2 + aj + b)uj + cj2uj−1

3F2 functions correspond to weight two modular forms.

(j + 1)3tj+1 = −(2j + 1)(aj2 + aj + a− 2b)tj − (4c + a2)j3tj−1

(j + 1)3sj+1 = 2(2j + 1)(aj2 + aj + b)sj + 4cj(4j2 − 1)sj−1

Page 43: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Other three-term recurrence relations

sj =j�

k=0

�j

k

�4

, level 10

(j + 1)3sj+1 = (2j + 1)(6j2 + 6j + 2)sj + j(64j2 − 4)sj−1, Franel

Experimental search:

(j + 1)3sj+1 = (2j + 1)(aj2 + aj + b)sj + j(cj2 + d)sj−1

(a, b, c , d) (13, 4, 27,−3) (6, 2, 64,−4) (14, 6,−192, 12)level 7 10 18

Page 44: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Level 7

f (7) =7P(q7)− P(q)

6=

∞�

j=−∞

∞�

k=−∞qj

2+jk+2k2

2

=∞�

j=0

�j/2��

k=0

�j

k

�2�2j − k

j

��2j − 2k

j

�η21η

27

f (7)

�3j/2

.

Level 10

f (10) :=10P(q10) + 5P(q5)− 2P(q2)− P(q)

12

=∞�

j=0

�j�

k=0

�j

k

�4��

η1η2η5η10f (10)

�4j/3

Page 45: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Level 13. Joint work with Dongxi Ye

(x1, x2, . . . , xm; q)∞ =∞�

j=0

(1− x1qj)(1− x2q

j) · · · (1− xmqj)

R = R(q) = q∞�

j=1

(1− qj)(j13) = q

(q, q3, q4, q9, q10, q12; q13)∞(q2, q5, q6, q7, q8, q11; q13)∞

= r5(q) = q∞�

j=1

(1− qj)5(j5) = q

(q, q4; q5)5∞(q2, q3; q5)5∞

1

R− 3− R =

1

q

∞�

j=1

(1− qj)2

(1− q13j)2

1 − 11− =1

q

∞�

j=1

(1− qj)6

(1− q5j)6

Page 46: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Factorizations: Rogers-Ramanujan continued fraction

1 − 11− =1

q

∞�

j=1

(1− qj)6

(1− q5j)6

1 − 11− =

�1√ − α5√

��1√ − β5√

1√ − α5√ =1

(q5s)1/12

∞�

j=1

1

(1− ζqj)5(1− ζ4qj)5

1√ − β5√ =1

(q5s)1/12

∞�

j=1

1

(1− ζ2qj)5(1− ζ3qj)5.

α =1−

√5

2, β =

1 +√5

2, ζ = exp(2πi/5), s =

η65η61

Page 47: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Factorizations: level 13

1

R− 3− R =

1

q

∞�

j=1

(1− qj)2

(1− q13j)2

1

R− 3− R =

�1√R

− γ√R

��1√R

− δ√R

1√R

− γ√R =

1

(qS)1/4× 1

(ξq, ξ3q, ξ4q, ξ9q, ξ10q, ξ12q; q)∞

1√R

− δ√R =

1

(qS)1/4× 1

(ξ2q, ξ5q, ξ6q, ξ7q, ξ8q, ξ11q; q)∞.

γ =3−

√13

2, δ =

3 +√13

2, ξ = exp(2πi/13), S =

η213η21

Page 48: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

(q2, q5, q6, q7, q8, q11, q13, q13; q13)∞

−γ q (q, q3, q4, q9, q10, q12, q13, q13; q13)∞

= (ξ2q, ξ5q, ξ6q, ξ7q, ξ8q, ξ11q, q, q; q)∞

(q2, q5, q6, q7, q8, q11, q13, q13; q13)∞

−δ q (q, q3, q4, q9, q10, q12, q13, q13; q13)∞

= (ξq, ξ3q, ξ4q, ξ9q, ξ10q, ξ12q, q, q; q)∞.

γ =3−

√13

2, δ =

3 +√13

2, ξ = exp(2πi/13)

Page 49: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Weight 2 modular functions

qd

dqlog

1− 11 − 2

�=

∞�

n=0

a(n)

�(1− 11 − 2)

(1 + 2)2

�n

a(n) =

�2n

n

� n�

j=0

�n

j

�2�n + j

j

�.

The coefficients a(n) satisfy a 3-term recurrence relation.

qd

dqlog

�R

1− 3R − R2

�=

∞�

n=0

A(n)

�R(1− 3R − R2)

(1 + R2)2

�n

The coefficients A(n) satisfy a 6-term recurrence relation.

Page 50: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Degree 13 hypergeometric transformation formulas

2F1�

112 ,

512 ; 1;

1728x(1+5x+13x2)(1+247x+3380x2+15379x3+28561x4)3

4√1 + 247x + 3380x2 + 15379x3 + 28561x4

=2F1

�112 ,

512 ; 1;

1728x13

(1+5x+13x2)(1+7x+20x2+19x3+x4)3

4√1 + 7x + 20x2 + 19x3 + x4

3F2�16 ,

56 ,

12 ; 1, 1;

1728x(1+5x+13x2)(1+247x+3380x2+15379x3+28561x4)3

√1 + 247x + 3380x2 + 15379x3 + 28561x4

=3F2

�16 ,

56 ,

12 ; 1, 1;

1728x13

(1+5x+13x2)(1+7x+20x2+19x3+x4)3

√1 + 7x + 20x2 + 19x3 + x4

.

Page 51: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Other levels similar to 5 and 13: (�− 1) | 24

If (�− 1) | 24, let f (�) = �P(q�)− P(q)

�− 1.

f (�) =∞�

j=0

A�(j)xj�

where A�(j) satisfies a recurrence relation, of order given by:

� 2 3 4 5 7 9 13 25order 2 2 2 3 3 3 6 9

Page 52: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Level 11. Joint work with J. Ge and D. Ye

f (3) =3P(q3)− P(q)

2=

∞�

j=−∞

∞�

k=−∞qj

2+jk+k2

2

f (7) =7P(q7)− P(q)

6=

∞�

j=−∞

∞�

k=−∞qj

2+jk+2k2

2

f (11) =

∞�

j=−∞

∞�

k=−∞qj

2+jk+3k2

2

f (�) =∞�

j=0

A�(j)

�η21η

2�

f (�)

�12j/(�+1)

, � = 3, 7, 11

(j + 1)3A11(j + 1) = 2(2j + 1)(5j2 + 5j + 2)A11(j)

−8j(7j2 + 1)A11(j − 1) + 22j(j − 1)(2j − 1)A11(j − 2).

Page 53: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Levels 14 and 15. Joint work with Dongxi Ye

Similar results, because:

d |14

d = 1 + 2 + 7 + 14 = 24�

d |15

d = 1 + 3 + 5 + 15 = 24

Cubic transformation of a level 5 function

f (x) =∞�

n=0

�2n

n

n�

j=0

�n

j

�2�n + j

j

xn =∞�

n=0

cnxn

1

1 + 9x + 27x2f

�x

(1 + 9x + 27x2)2

=1

1 + 3x + 3x2f

�x3

(1 + 3x + 3x2)2

Page 54: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Quintic transformation of a level 3 function

g(x) =∞�

n=0

anxn, a0 = 1

(n + 1)3an+1 = (2n + 1)(7n2 + 7n + 3)an

− n(29n2 + 4)an−1 + 30n(n − 1)(2n − 1)an−2

x =v

(1 + 3v)2=

w

1 + w − w2near x = 0

xg(x) =vw

3v(1 + w2)− 2w(1− 9v2) 3F2

� 13 ,

12 ,

23

1, 1;

108v3w2

(w2 + 27v3)2

=5vw

3v(1 + w2) + 2w(1− 9v2) 3F2

� 13 ,

12 ,

23

1, 1;

108v3w2

(1 + 27v3w2)2

�.

Page 55: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Jacobi, level 4

∞�

j=−∞qj

2

4

=

∞�

j=−∞(−1)jqj

2

4

+

∞�

j=−∞q(j+

12 )

2

4

Level 15 analogue

∞�

j=−∞

∞�

k=−∞qj

2+jk+k2

2

+ 5

∞�

j=−∞

∞�

k=−∞q5j

2+5jk+5k2

2

= 3

∞�

j=−∞

∞�

k=−∞qj

2+jk+4k2

2

+ 3

∞�

j=−∞

∞�

k=−∞q2j

2+jk+2k2

2

Page 56: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Other levels

Level 10

t(k) =k�

j=0

�k

j

�4

, Franel, 1895, four-term recurrence

κ = r(q)r2(q2) = q∞�

j=1

(1− q10j−9)(1− q10j−8)(1− q10j−2)(1− q10j−1)

(1− q10j−7)(1− q10j−6)(1− q10j−4)(1− q10j−3)

Level 12

κ12 = q∞�

j=1

(1− q12j−11)(1− q12j−1)

(1− q12j−5)(1− q12j−7)

The coefficients satisfy a six-term recurrence relation.

There are also results for levels 18, 20, 24, 32

Page 57: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Summary

Table: Order of recurrence relations for level �

� 1..4 5..10 11 12, 13 14..16 18 20, 24, 32 25order 2 3 4 6 4 3 4 9

Levels 1, 2, 3: Ramanujan’s “alternative theories”

Level 4: Jacobi

Levels 5, 6, 8, 9: Zagier’s sporadic sequences

Level 5: Rogers-Ramanujan cont. frac. Weight 1: Apery ζ(2)

Level 6: 3 theories, one involves the cubic continued fraction

Weight 2: Apery ζ(3), Domb, Almkvist-Zudilin numbers

Levels 2, 3, 4, 5, 7, 9, 13, 25: (�− 1)|24 share a common theory

Levels 3, 7, 11: another common theory

Levels 14, 15: very similar theories

Page 58: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Ramanujan’s series for 1/π

Ramanujan-Gosper, level 2, degree 29

1

π=

2√2

9801

∞�

k=0

�2k

k

�2�4k2k

�(1103 + 26390k)

3964k.

�η21η

22

2P(q2)− P(q)

�4�����q=exp(−2π

√29/2)

=1

3964

Another example, level 11, degree 17

1

π=

√11

484

∞�

k=0

(−1)k c(k)(67 + 221k)

44k

where c(k) satisfies a 4-term recurrence relation.

�η1η11�

j

�k q

j2+jk+3k2

�2������q=− exp(−π

√17/11)

=−1

44

Page 59: Ramanujan’s theories of elliptic functions to alternative ...stant001/ASKEYABS/Shaun_Cooper.pdf · Ramanujan’s “alternative theories” of elliptic functions K. Venkatachaliengar

Another example, with an “80” in it

Zagier’s sporadic sequence: (a, b, c) = (10, 3,−9)

Level: � = 6

Degree: N = 5

1

π=

1

37/2

∞�

k=0

�2k

k

k�

j=0

�k

j

�2�2jj

(13 + 80k)

182k

x :=

�4η1η2η3η6

6P6 − 3P3 + 2P2 − P1

�2�����q=exp(−2π

√N/�)

=1

182

�N

�× 2

�1− 4ax − 16cx2 =

80

37/2.

The end!