RADIOSS ),å½ § ¿a ~a÷¡îØí´ ),å½_§ ¿a ~a÷¡îØí´ Ò\¬ 1 Kim H. Parker 2 x â1 1...

7
RADIOSS 1 Kim H. Parker 2 1 1 2 Physiological Flow Studies Group, Department of Bioengineering, Imperial College London 1 [1 2] 3 [3 4] 2 2-1 r i 10_mm h 2_mm L L_=_1000_mm =_100r i E s 0.5_MPa 1000_kg/m 3 0.45 μ 4.0__10 -3 _Pa s Z-X Y Fig._1 L s 100_mm AR AR_=_70% 1 476 224 5_mm 147987 141400

Transcript of RADIOSS ),å½ § ¿a ~a÷¡îØí´ ),å½_§ ¿a ~a÷¡îØí´ Ò\¬ 1 Kim H. Parker 2 x â1 1...

RADIOSS

1Kim H. Parker

2 1

1

2 Physiological Flow Studies Group, Department of Bioengineering, Imperial College London

1

[1 2]3

[3 4]

2

2-1

ri

10_mm h 2_mm L

L_=_1000_mm =_100ri Es

0.5_MPa 1000_kg/m3

0.45 μ 4.0_ _10-3

_Pa s

Z-X Y Fig._1

Ls 100_mm AR AR_=_70% 1

476 224 5_mm

147987 141400

Figure_1_Schematic view of the stenosed artery model.

2-2

RADIOSS_ver._4.6 RADIOSS

ALE

f u jf( )

t+

f uif u j

f( )xi

=p

x j

+ μ2u j

f

xi xi (1)

f

t+

f u i

f( )xi

= 0 (2)

fuif

p μ fp c

f= 0

f+

p

c2 (3)

0f

1000_kg/m3

ij

x jV

dV =s ui

s

tVdV (4)

ij =Cijkl kl (5)

ij Cauchy Cijkl kl

2-3

(6) (7)

(8)

ui

f= ui

s (6)

p

t= f c

un

f

t+ c

p p( )2lc

(7)

u

i

s= 0 (8)

f s n

c p

1.0_ _10-3

_~_1.0_ _10-2

_mm

0.1%_~_1% Re 1000

10_ms

Re 4000 Fig._2

Figure_2_Boundary condition at the inlet.

2-4

= μ

u f s

r (9)

uf-s

3

x_=_0 uy Dc Dl

Us

Fig._3 t_=_0_ms

5% 1.0_Pa

0.5_Pa 2.0_Pa

0.5_Pa

Us

2 Dc 1 Us

uy Us

uy

2

0.1_m/s t_=_35_ms y_=_200_mm

t_=_55_ms uy

Us

t_=_80_ms Us

t_=_125 175_ms

(t_=_0_ms) (t_=_20_ms)

(t_=_35_ms) (t_=_55_ms)

(t_=_80_ms) (t_=_105_ms)

(t_=_125_ms) (t_=_175_ms)

Figure_3_Wave propagation and WSS distribution in the stenosed artery model.

4

Us

Us

3.0_Pa

1.0_Pa Us

3.5_Pa t_=_125_ms

1.5_Pa t_=_175_ms

Somer[5]

Evans blue

Newman[6]

trypan blue Somer

Newman

Somer

Newman

Newman

IT

(768)

(A)(2) No.16200031

RADIOSS_ver._4.6

[1] C. G. Caro, J. M. Fitzgerald, and R. C. Schroter, “Atheroma and arterial wall shear: observation, correlation and

proposal of a shear dependent mass transfer mechanism for atherogenesis,” Proceedings of the Royal Society,

London, vol. 177, pp. 109-159, 1971.

[2] C. K. Zarins, D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov, “Carotid bifurcation

atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress,”

Circulation Research, vol. 53, pp. 502-514, 1983.

[3] J. S. Stroud, S. A. Berger, and D. Saloner, “Numerical analysis of flow through a severely stenotic carotid artery

bifurcation,” Journal of Biomechanical Engineering, vol. 124, pp. 9-20, 2002.

[4] I. Marshall, S. Zhao, P. Papathanasopoulou, P. Hoskins, and X. Y. Xu, “MRI and CFD studies of pulsatile flow in

healthy and stenosed carotid bifurcation models,” Journal of Biomechanics, vol. 37, pp. 679-687, 2004.

[5] J. B. Somer, G. Evans, and C. J. Schwartz, “Influence of experimental aortic coarctation on the pattern of aortic

Evans blue uptake in vivo,” Atherosclerosis, vol. 16, pp. 127-133, 1972.

[6] D. L. Newman, J. R. Batten, and N. L. Bowden, “Influence of experimental stnosis on uptake of albumin by the

abdominal aorta,” Atherosclerosis, vol. 26, pp. 195-204, 1977.