R. A. Sultanov 1,2) and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

80
Protonium Pn = (p + p - ) α Formation in a Collision Between Slow Anti- Proton (p - ) and Muonic Hydrogen: p - + H μ => (p + p - ) α + μ - R. A. Sultanov 1,2) and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA 2) IFT-UNESP, SAO PAULO, SP, BRAZIL Critical Stability Workshop , Santos, SP, Brazil October 12-17, 2014 1

description

Protonium Pn = ( p + p - ) α Formation in a Collision Between Slow Anti-Proton (p - ) and Muonic Hydrogen: p - + H μ => (p + p - ) α + μ -. R. A. Sultanov 1,2) and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA 2) IFT-UNESP, SAO PAULO, SP, BRAZIL - PowerPoint PPT Presentation

Transcript of R. A. Sultanov 1,2) and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

Page 1: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

Protonium Pn = (p+p-)α Formation in a Collision Between Slow Anti-Proton (p-) and Muonic

Hydrogen: p- + Hμ => (p+ p-)α + μ-

R. A. Sultanov1,2) and S.K. Adhikari2)

1)SCSU, St. Cloud, Minnesota, USA2)IFT-UNESP, SAO PAULO, SP, BRAZIL

Critical Stability Workshop , Santos, SP, Brazil

October 12-17, 2014

1

Page 2: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

Slow p physics:1. ANTIMATTER: p-, Ps, Ħ, Pn, Ħμ

2. Theory and experimental developments: ATRAP, ASACUSA, ALPHA … CERN

3. Anti-hydrogen, muonic antihydrogen, Ps atoms, slow antiproton capture, etc.

4. Theory: 3- and 4-body Coulomb and Coulomb + nuclear quantum systems: collisions, bound states, etc.

5. Few-Body, Faddeev type computations.6. Test of different numerical methods and procedures:

discretization & matrix methods.7. One can (should) compare theoretical & available

experimental results. 2

_-

Page 3: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

LOW ENERGY ANTIPROTON ( pbar = p- = p ) and Ħ PHYSICS

• Collision experiments with antiprotons: H2 ionization with pbar: significant deviation between experimental results and theory.

• Antiprotonic helium experiments: CPT & fundamental constants. Temp. T < 1 K!

• pbar + He+ experiments and theory: pbar+4He+ and pbar+3He+ - ATOMCULE! at ASACUSA TEAM (RIKEN, JAPAN).

3

_-

Page 4: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

ASACUSA = ATOMIC SPECTROSCOPY AND COLLISIONS USING SLOW ANTIPROTONS

ATRAP = ANTIHYDROGEN TRAP

ALPHA = Antihydrogen Laser Physics Apparatus

4

Page 5: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

ATHENA = ANTIHYDROGEN PRODUCTION AND PRECISION EXPERIMENTS========================In 2002, it was the first experiment to produce 50,000 low-energy Ħ.Nature 419, 456 (2002).

5

Page 6: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

WHY ANTIMATTER?

• GOALS: TO PRODUCE COLD Ħ; TO TRAP COLD Ħ; TO COMPARE H and Ħ WITH THE USE OF LASER SPECTR-OSCOPY.

• CPT SYMMETRY: Particles and anti-particles have same masses, same mean life, same magnetic moments, and… opposite charges!

• ATOM and ANTI-ATOM HAVE SAME STRUCTURE?

6

Page 7: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

WHY ANTIHYDROGEN: Ħ ?• Spectroscopic measurement on Ħ in

comparison with corresponding results for normal H.

• This comparison may contribute to the verification OR falsification of the CPT conservation law.

• Gravitational measurements of Ħ and H and …..

• Antimatter may even be related to the dark matter problem in astrophysics.

7

Page 8: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

WHY PROTONIUM: Pn ?

• Pn = p-p+ = p p+ itself is a very interesting two-heavy particle system in view of the interplay between Coulomb and nuclear forces between the particles: p- & p+

• Laser spectroscopy of longer-living Pn’s in vacuum. • Pn formation & annihilation is related to

charmonium production - a hydrogen-like atom: a bound state of a c quark and c anti-quark, i.e. cc

• The pp+ annihilation can produce cc in the ground or excited states.

8

_-

-

_-

_- _-

Page 9: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

Pn FORMATION & ANNIHILATION: cc

• It would be interesting for future experiments with participation of antiprotons and muons to compute charmonium production (formation) rate from the reaction: p- + Hμ => (p+ p-)α + μ-

• It would be interesting to use and check different NN interaction potentials in this reaction.

• But first, the 3-charge-particle low energy scattering problem should be solved!

• Particles have comparable masses: No adiabatic approximation!

9

_-

_-

Page 10: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

MUON PHYSICS: Hμ and Ħμ EVEN BETTER ?

• In book: “Introductory Muon Science”, 2003: K. Nagamine pointed out: muonic

antihydrogen atom might be even better choice to check the CPT law than usual antihydrogen atom, i.e. Ħ.

• Therefore, as a first step it would be interesting to compute the formation rates of Ħμ atoms at low and very low energies from ~ 5eV down to ~ 10-4 eV. This is done in this work. 10

Page 11: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

WHY MUONIC ANTIHYDROGEN ?

“If the CPT violating interaction is short range with an extremely massive exchange boson such an effect can be detected more easily in the case of muonic antihydrogen than in simple antihydrogen. This is because the size of the Ħμ atom is ~207 times smaller than Ħ”.

11

Page 12: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

Some references (1),

• Gabrielse, G. (ATRAP Collab.) et. al., “Adiabatic Cooling of Antiprotons”, 2011, Phys. Rev. Lett., 106, 073002.

• Andresen, G. B. (ALPHA Collab.) et. al., “Evaporative Cooling of Antiprotons to Cryogenic Temperatures”, 2010, Phys. Rev. Lett., 105, 013003.

• Pohl R. et. al. “The size of the proton”, 2010, Nature, 466, 213.

12

Page 13: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

13

Page 14: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

14

Page 15: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

Some references (2).

• Hayano, R.S., Hori M., Horvath, D., “Antiprotonic helium and CPT invariance”, 2007, Rep. Prog. Phys., 70, 1995.

• Lauss, B. “Fundamental measurements with muons ”, 2009, N. P. A 827, 401c.

• Klempt, E., Batty, C., Richard, J.-M. “The antinucleon-nucleon interaction at low energy: annihilation dynamics”, 2005, Phys. Rep. 413, 197.

• Klempt, E., Bradamante,F.,Martin, A.,Richard,J.-M. “Antinucleon-nucleon interaction at low energy: Scattering and protonium.”, 2002, Phys. Rep. 368, 119.

15

Page 16: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

In this work:

• A bound state of a proton, p+, and its counterpart antiproton, p-, is a Protonium atom Pn = (p p).

• The following three-charge-particle reaction:

p + (p * +μ−)1s → (p+p ) * α + μ−

is considered in this work, where μ− is a muon (mμ = 207me).• This is a 3-body Coulomb problem with heavy particles.• The cross sections and rates of the Pn formation reaction

are computed in the framework of a few-body approach.16

Page 17: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

ALSO in this work:

• Two 3-charge-particle collisions with participation of slow antiprotons and: 1) positronium atoms, Ps, & 2) muonic muonium atoms (“True Muonium”) is also considered:

• Instead of 3 coupled Faddeev equations, just 2 coupled Faddeev-Hahn-type equations are used.

• Solution: a modified close coupling expansion approach and K-matrix formalism (unitarity). 17

Page 18: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

THREE-BODY SYSTEMS

18

Page 19: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

THREE-BODY SYSTEMS

19

Page 20: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

THREE-BODY SYSTEMS

20

Page 21: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

THREE-BODY SYSTEMS

COULOMB THREE-BODY SYSTEMS AT LOW ENERGIES, that is BEFORE THE 3-BODY BREAK-UP SRESHOLD.

THERE ARE ONLY TWO SPATIAL CONFIGURATIONS, that is NOT THREE!

21

Page 22: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

CONFIGURATION TRIANGLE (123)

22

Page 23: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

“Usual” PROTONIUM Pn=(p-p+) FORMATION REACTIONS: n~30

23

Page 24: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

BUT WITH MUONS TOO:

24

Page 25: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

Energy levels in p- + H

25

Page 26: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

Energy levels in p- + Hμ

26

Page 27: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

COULOMB THREE-BODY SYSTEMS

27

Page 28: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

TWO (NOT 3) SPATIAL CONFIGURATIONS

28

Page 29: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

JACOBI COORDINATES, MASSES and EQUATIONS

3-body systems with arbitrary masses: the 3-body W.F. is represented as:

29

Page 30: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

Elastic – inelastic channels and rearrangement/transfer channels:

p- + (μ+μ-)1s → p- +(μ+μ-)1s (+2s,+2p,+3s…)

→ μ- + (Ħμ)1s (+2s,+2p,+3s…)

i.e. CLOSED channels

p +(p * +μ−)1s → p + (p * +μ−)1s(+2s,+2p,+3s…)

→ μ− + (p+p ) * 1s

→ μ− + (p+p ) * 2s

→ μ− + (p+p ) * 2p

30

Page 31: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

A set of two coupled equations:

31

FADDEEV-HAHN-type EQUATIONS

Page 32: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

32

1). Y. Hahn, Phys. Rev. 169, 794 (1968).

2). The constructed coupled equations satisfy the Schrödinger Eq. exactly.

3). The Faddeev decomposition avoids the overcompleteness problems.

4). Two-body subsystems are treated in an equivalent way.

Page 33: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

33

5). The correct asymptotics: guaranteed.

6). It simplifies the solution procedure and provides the correct asymptotic behavior of the solution below the 3-body break-up threshold.

7). FH-type equations have the same advantages as the Faddeev equations, because they are formulated for the w.f. components with correct physical asymptotes.

Page 34: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

ASYMPTOTICS

for only two components:

34

Page 35: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

35

Page 36: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

36

Page 37: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

37

Page 38: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

38

Page 39: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

Vectors & Angles of the 3-Body System (123)

39

Page 40: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

K-matrix formalism:K12 = K21 or K12 / K21 = 1.0 !

arXiv:1304.2434v2 or J. Phys. B 46 (2013) 215204

40

Page 41: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

41

Page 42: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

Discretization Procedure:

42

Page 43: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

43

Page 44: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

44

Page 45: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

45

Page 46: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

46

Page 47: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

47

Page 48: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

48

Page 49: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

49

Page 50: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

50

Page 51: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

RESULTS FOR PROTONIUM FORMATION IN SLOW COLLISIONS

BETWEEN p and Hμ

51

_

Page 52: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

52

Page 53: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

A. Igarashi, N. Toshima, “Application of hyperspherical close-coupling method to antiproton collisions with muonic hydrogen”, Eur. Phys. J. D

46, 425–430 (2008)

53

Page 54: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

54

Page 55: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

55

Page 56: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

RESULTS FOR ANTIHYDROGEN AND MUONIC ANTIHYDROGEN

THREE-BODY FORMATION REACTIONS

56

Page 57: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

FEW-BODY REACTIONS for Ħ and Ħμ FORMATION (1)-(5)

57

Page 58: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

TEST: MUON TRANSFER 3-BODY REACTIONS (6)-(8) of

MUON CATALYZED FUSION CYCLE (μCF - cycle)

58

Page 59: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

RESULTS: arXiv:1304.2434v2 or J. Phys. B 46 (2013) 215204

1). t+ + (dμ)1s → (tμ)1s + d+

2). t+ + (pμ)1s → (tμ)1s + p+

3). d+ + (pμ)1s → (dμ)1s+ p+

4). pbar + Ps → Ħ + e-

5). pbar + (Ps)μ → Ħμ + μ-

HERE: t+ = 3H+; d+ = 2H+; p+ = 1H+; μ-

pbar=p- ; Ps = (e+ e-); (Ps)μ=(μ+ μ-). 59

Page 60: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

t+ + (dμ)1s → (tμ)1s + d+

• Rearrangement scattering at low energies;• Only total angular momentum L=0, 1s+2s+2p

in the expansion functions;• Muon transfer reaction cross sections has

been computed; AND…• Low energy muon transfer rate:

λ = σ v N = const !

60

Page 61: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

61

Page 62: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

Muon transfer: λ = σ v N

λ = 2.6 ✖ 10-8 s-1

This work, FH equations (1s+2s+2p and the total orbital momentum only L=0: at low energies this is good).

λ = 2.8 ✖ 10-8 s-1

(Kino, Kamimura, Hyper. Int. 82, 45 (1993)).

λ = 2.8 ✖ 10-8 s-1 & 3.5 ✖ 10-8 s-1

(Breunlich et al. (Experiment) in PRL 58, 329 (1987)).62

Page 63: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

t+ + (pμ)1s → (tμ)1s + p+

63

Page 64: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

d+ + (pμ)1s → (dμ)1s + p+

64

Page 65: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

65

Page 66: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

pbar + Ps → Ħ + e-

66

Page 67: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

67

Page 68: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

68

Page 69: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

Ħ PRODUCTION RATE

• Now one can compute the rate of the Ħ - atom production:

• LEAR facility @ CERN:

R = σĦ n d IHere: n - the density of Ps atoms, d - the linear dimension, of the interaction region, & I - intensity of the Ps atom beam.

69

Page 70: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

pbar + (μ+μ)- → Ħμ + μ-

• Here are new results for the 3-particle reaction.

• Computation is done for low and very low energies: from 1 eV down to 10-4 eV.

• Very stable results for the rearrangement scattering cross sections with good unitarity numbers, i.e. K12 / K21 ~ 1.0.

• Only 1s, 1s+2s and 1s+2s+2p modified CC (close-coupling) approximation has been applied. 70

Page 71: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

pbar + (Ps)μ → Ħμ + μ-

71

Page 72: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

72

1. The Pn formation reaction was computed. We obtain a fairly good agreement between our results and with previous computations for the 1s Pn formation channel and for the elastic scattering channel. However, we obtain a not satisfactory agreement in the 2p Pn formation channel.

2. We plan to include the strong interaction between the hadrons now, i.e. p- and p+ in the 1s channel.

3. The antihydrogen (Ħ, Ħμ) formation cross sections have been computed from 3-charge-particle collisions at low and very low kinetic energies.

Page 73: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

73

4. Test 3-body systems (muon transfer) have also been computed with the use of the FH-type equations.

5. Normal and muonic antihydrogen formation thermal rates are computed at low and very low temperatures: T ~ 10-1 K. This is important in view of possible near future, very-very low energy good antiproton beams at CERN!

6. Later, it may be useful to increase the expansion basis: 1s+2s+2p+3s+3p+3d+… AND

7. Consider higher values of the total 3-body angular momentum L, i.e. L > 0 (currently L=0 ).

Page 74: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

THIS IS IT !

THANK YOU FOR YOUR ATTENTION !

74

Page 75: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

75

Page 76: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

ADDITION:

If time permits: Takayanagi’s modified wave number approximation (from 1960s) in order to take into account and compute contributions from higher values of the total three-body angular momentum L.

76

Page 77: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

77

Page 78: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

The Takayanagi Method: Modified Wave Number Approximation:

MWNA (1950-60’s)”• In order to take into account an important contribution

from the higher values of the total angular momentum L, i.e. L > 0. Important: below “J” and our “L” are the same 3-body angular momenta, i.e. J=L!

• This method (MWNA) was originally introduced in some molecular physics applications such as H2+H2: K. Takayanagi, Adv. At. Mol. Phys. pp. 149-193 (1965).

• Later this approach became a prototype for a very successful and widely used in computational quantum chemistry: The Famous J-shifting Approximation.

78

Page 79: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

79

Page 80: R. A. Sultanov 1,2)  and S.K. Adhikari 2) 1) SCSU, St. Cloud, Minnesota, USA

80