Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release...
-
Upload
hoangtuong -
Category
Documents
-
view
218 -
download
0
Embed Size (px)
Transcript of Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release...

TDAResearch
Modeling an Electrostatically Actuated MEMS Diaphragm
Pump – Part IJames Nabity9 Mar 2004
Submitted in partial requirements of Fluid-Structures Interactions Class (ASEN 5519-006)

TDAResearchTDAResearch
Acknowledgements
• ONR SBIR Phase II “Liquid Fuel Atomizer” sponsored by Dr. Chris Brophy
• ANSYS simulations performed by Mr. Gopi Krishnan under AFOSR grant sponsored by Dr. Mitat Birkan

TDAResearchTDAResearch
Outline
• Background & Motivation• Objective• What have others done ?• Modeling & Simulation
– 1-d Model– ANSYS
• Conclusions• Future Plans

TDAResearchTDAResearch
BackgroundSeiko Epson TM-8000J configuration
Can inkjet technology be applied to other applications???

TDAResearchTDAResearch
Motivation
• Can inkjet technology be applied to other applications???– Yes…optics, automotive & aerospace
• Analysis tools required for design, BUT commercial CFD/FEA software packages are usually difficult to learn and use
• Comprehensive models difficult to develop• THUS, simple and reasonably accurate
model(s) are required to quickly evaluate design potential

TDAResearchTDAResearch
Micropump for Aerospace
micropump chamber
diaphragm supports at exit port
fluid check valves

TDAResearchTDAResearch
Objective
• Develop, validate and exercise a simplequasi 1-d control volume based model
– Capture important physics– Apply to liquid fuels
• Simulate micropump w/ ANSYS

TDAResearchTDAResearch
What have others done?
• Control-volume or lumped-mass models– L.S. Pan, et al, “Analytical solutions for the dynamic analysis
of a valveless micropump—a fluid-membrane coupling study,” Sensors and Actuators A 93 (2001) pp 173-181
– Anders Olsson, et al, “A numerical design study of the valveless diffuser pump using a lumped-mass model,” J. Micromech. Microeng. 9 (1999) pp 34-44
• Numerical modeling– Nam-Trung Nguyen, “Numerical Simulation of Pulse-Width-
Modulated Micropumps with Diffuser/Nozzle Elements”– Gopi Krishnan, PhD candidate, U of Colorado-Boulder

TDAResearchTDAResearch
Physical Model Comparison
• Nabity
• Pan et al
• Olsson et al
• Nguyen et al
L = w
1 2 e
-md2ydt2
Fe Fk
yP-+
fillcycle
expulsioncycle
∞
CV
h0
τw
LL = w
1 2 e
-md2ydt2
Fe Fk
yP-+
fillcycle
expulsioncycle
∞
CVCV
h0
τw
L

TDAResearchTDAResearch
1-D Model Developent

TDAResearchTDAResearch
Model Formulation
( ) ( ) eeffCV
pAAtApAtAhLdV
dtdApAt ||||)(|12|| 2
222
112 +=+=⋅−
++ ∫∫∫ υρυρυµυρυρ vvvv
L = w
1 2 e
-md2ydt2
Fe Fk
yP-+
fillcycle
expulsioncycle
∞
CV
h0
τw
L
∑ ∫∫∫
++−+==
CVkey dV
dtyd
dtdgmApFFF
vvvvv
ρ0
( ) ( )dtdVolAtAtm ee ρυρυρ −== 1|| vv
&Continuity:
( )∫∫∫∫∫∫∫∫ ++
++−
++=∆
f
i
y
ykeoutinCV dyFFdmpudmpuEdmvv
|2
|2
|22 υ
ρυ
ρ
x momentum:ΣF of diaphragm:
inertial terms << loads and may be neglectedEnergy: adiabatic, unreacting flow

TDAResearchTDAResearch
Assumptions
• 1-d adiabatic, incompressible flow• Uniform velocity profile• Unsteady, but assume quasi-static
Hagen-Poiseuille flow during each time step
• Perfect check valve• Diaphragm displaced uniformly

TDAResearchTDAResearch
Poiseuille Flow(parallel plates)
h
u(y)
dyyduw
dyd
dxdP
lam)(/0 µττ
=+−=
dxdP
dyud=2
2µ
Integrate twice and apply no slip boundary conditions at the wall
dxdPhcc
µ8&0
2
21 −==
From x-momentum
( ) ( )22 481 yhdxdPyu −−=
µ
Now, flow rate can be found for large plate width
( )∫−
−=⋅=2
2
3
12
h
hdxdPwhwdyyuQ
µ

TDAResearchTDAResearch
Flat Plate Assumptions
• thin flat plates (t/w < ¼) of uniform thickness and of homogeneous isotropic material; actual t/w = 0.005
• fixed edges with a uniformly distributed load
• the maximum deflection under load must be very small; y < t/2 (y = t possible for our pump)
• all forces are normal to the plate• the diaphragm is nowhere stressed beyond
the elastic limit

TDAResearchTDAResearch
Simplified Equations
• continuity
• x-momentum (CV1-2 for example)
• ∑Fy = 0
v 2
w2 ∆y∆t⋅
w h⋅:=
P 1 w2⋅ F e F k+
∆M ρ JP10 v 12
⋅ P 1+
w⋅ G f⋅ ρ JP10 v 2⋅ Q disp⋅+
12 µ f⋅ L star⋅ w⋅ v 2⋅
Gf− ρ JP10 v 2
2⋅ +
−:=
ve
w2 ∆y∆t⋅
wn hn⋅:=
P 2 w⋅ Gf⋅

TDAResearchTDAResearch
Forces on Diaphragm
• Pressure
• Electrostatic
• Spring
ke FFwP +=⋅ 21
F e w2
12ε o⋅ ε f⋅ ε d
2⋅ Vi
2⋅
ε d h 0 y−( )⋅ ε f Gd⋅+ 2
:=
F ky E⋅ t d
3⋅
α w4⋅
− w2⋅:=
Roark’s Formulas for Stress and Strain, McGraw-Hill Publishing Co, 7th Edition, 2002

TDAResearchTDAResearch
Energy Equation
∆E system ∆E 1 ∆E 2− ∆E e+ ∆E k− ∆E CV−:=
∆Ei uiPi
ρ fuel+
vi2
2+
ρ fuel⋅ Qi⋅ ∆t⋅:= ui boundary work + KE
∆E e
y i
y f
y
12ε o⋅ ε f⋅ ε d
2⋅ Vi
2⋅
ε d h 0 y−( )⋅ ε f Gd⋅+ 2
A diaphragm
⌠⌡
d:=
∆E k
y i
y f
yy E⋅ t d
3⋅
α w4⋅
A diaphragm
⌠⌡
d:=
electrostatic
spring
∆E CV u 1v 2
2
2+
P 1 P 2+( )2ρ JP10
+
− ρ JP10⋅ Q 2 Q 1−( )⋅ ∆t⋅:= work inside deforming control volume

TDAResearchTDAResearch
SS302 Diaphragm Mat’l Properties
• Density (8.0 gm/cc)• Yield Strength (276 MPa)• Modulus of Elasticity (20,700 MPa)• Poisson’s Ratio (0.3)

TDAResearchTDAResearch
Thermally Grown Oxide Dielectric Layer
• Limits the Maximum Applied Voltage– Dielectric Constant (3.8)– Voltage Breakdown Strength (1000 V/µm)– MAX thickness about 3 µm

TDAResearchTDAResearch
JP-10 Fuel Properties@ 25°C
• Density (0.938 gm/cc)• Viscosity (0.003 kg/m-s)• Specific Heat (1.55 kJ/kg-K)• Surface Tension (0.031 N/m)• Dielectric Constant (2.46)

TDAResearchTDAResearch
MathCAD Solution Methodology #1
• Solution entails one-half cycle– Electrostatic pull-in– Release to neutral position
Neutral position Release to neutral position
Electrostatic Actuation

TDAResearchTDAResearch
MathCAD Solution Methodology #2
• Setup geometry– Chamber length & height– Exit port length & height
• Define parameters– Voltage– Time step– and more
• Define initial conditions (displacement)

TDAResearchTDAResearch
MathCAD Solution Methodology #3
• Calculate:– Electrostatic force– Spring force– Upstream pressure– Simultaneously solve for:
• Displacement• Volumetric flow rate• Downstream Pressure
– Check conservation of mass, momentum & energy– Repeat for next time step

TDAResearchTDAResearch
Initial ANSYS Results
L*y(t)
w
0
5
10
15
20
0 2 4 6
t, msec
y(t),
um
1-d modelANSYS
010
2030
4050
6070
80
0 2 4 6
t, msec
P, p
si
L* = wL* = w/20 < L* < wANSYS
w = 10000umh = 50um
Gopi Krishnan, Mesh and Time Dependence Study (ANSYS results) Apr 2002

TDAResearchTDAResearch
Additional ANSYS Results
volumetric flowrate
0102030405060708090
0 2 4 6
t, msec
V, c
c/m
in
L* = wL* = w/20 < L* < wANSYS
.
velocity
0
1
2
3
0 2 4 6
t, msec
vexi
t, m
/s
L* = wL* = w/20 < L* < wANSYS
Discrepancy largely due to difference in the diaphragm displacement profile (+20% at 1 msec) for ANSYS case

TDAResearchTDAResearch
Parametric Analysis
• Characteristic length for Poiseuille pressure loss ( & nominally )
• Actuation voltage & frequency• Pump Size• Supply pressure
wL t <∆f
t GwywL
⋅∆⋅
=∆
2

TDAResearchTDAResearch
Actuation Voltage
0
10
20
30
40
50
0 1 2 3 4 5
t, msec
P, p
si
1000V5000V
0
1
2
3
4
5
6
0 1 2 3 4 5t, msec
vexi
t, m
/s
1000V5000V
0
25
50
75
100
125
150
175
0 1 2 3 4 5
t, msec
V, c
c/m
in
1000V5000V
0
5
10
15
20
25
30
35
0 1 2 3 4 5
t, msec
y(t),
um
1000V5000V
.
w = 10000umh = 50um

TDAResearchTDAResearch
Actuation Frequency
0
5
10
15
20
25
30
35
0 1 2 3 4 5
t, msec
y(t),
um
130 Hz290 Hz
w = 10000umh = 50umV = 1000V
0
25
50
75
100
125
150
175
200
0 1 2 3 4 5
t, msec
V, c
c/m
in
130 Hz290 Hz
0
1
2
3
4
5
6
7
0 1 2 3 4 5t, msec
vexi
t, m
/s
130 Hz290 Hz
0
10
20
30
40
50
0 1 2 3 4 5
t, msec
P, p
si
130 Hz290 Hz

TDAResearchTDAResearch
Pump Size
0
5
10
0 1 2 3 4 5
t, msec
y(t),
um
10000um x 10000um x 50um
5000um x 5000um x 25um
0
0.5
1
1.5
2
2.5
3
0 1 2 3 4 5
t, msec
P, p
si
10000um x 10000um x 50um
5000um x 5000um x 25um
V = 1000V
0
1
2
0 1 2 3 4 5t, msec
vexi
t, m
/s
10000um x 10000um x 50um
5000um x 5000um x 25um
0
5
10
15
20
25
30
0 1 2 3 4 5
t, msec
V, c
c/m
in
10000um x 10000um x 50um5000um x 5000um x 25um

TDAResearchTDAResearch
Scaling Law
• Flowrate proportional to– displaced volume (i.e. atomizer size)– actuation voltage– actuation frequency
V fVQ disp ⋅⋅α&
Proportionality constant is 0.0025

TDAResearchTDAResearch
Conclusions
• A MathCAD model developed for parametric evaluation of electrostatically actuated diaphragm pumps– MathCAD not well suited to iterative problems– predictions appear qualitatively correct– quantitative accuracy, yet to be validated
• Weaknesses– steady 1-d Poiseuille flow– uniform diaphragm deflection

TDAResearchTDAResearch
Next Class Period
• Comparison with ANSYS linear solution results for a model problem
• Future work

TDAResearch
Modeling an Electrostatically Actuated MEMS Diaphragm
Pump – Part II
James Nabity11 Mar 2004
Submitted in partial requirements of Fluid-Structures Interactions Class (ASEN 5519-006)

TDAResearchTDAResearch
Acknowledgements
• ONR SBIR Phase II “Liquid Fuel Atomizer” sponsored by Dr. Chris Brophy
• ANSYS simulations performed by Mr. Gopi Krishnan under AFOSR grant sponsored by Dr. Mitat Birkan

TDAResearchTDAResearch
ANSYS Model Development

TDAResearchTDAResearch
Model Pump with Passive Valves
Diaphragm
Plenum
Outlet
Inlet Works because flow resistance is less in outlet direction

TDAResearchTDAResearch
Numerical Methods
• ANSYS Multi-physics finite element code is used to carry out simulation:– Weak sequential algorithm to couple structural
and fluid dynamics (FSI module),– Linear structural solver,– Arbitrary Lagrangian-Eulerian formulation solves
for the fluid flow with moving boundaries, – Fluid dynamics is solved using ANSYS FLOTRAN
(Flow treated as incompressible),– Non-linear pressure velocity coupling via
SIMPLEF scheme

TDAResearchTDAResearch
Linear vs Non-linear Solver
0
5
10
15
20
25
30
0 10 20 30 40 50 60
Pressure ( KPa )
Defle
ctio
n ( m
icro
ns )
linear non linear

TDAResearchTDAResearch
Mesh
Issues:-contact: mesh thickness can’t be zero-mesh refinement: educational version
limited to 32,000 elements
Fluid: FLOTRAN FLUID142 elementsStructure: SOLID 54 elements

TDAResearchTDAResearch
ANSYS Pump GeometryTime Dependent 3-D Simulation
Diaphragm
Plenum
Outlet
Inlet Ldiaph = 1000 µm
tdiaph = 10 µm
tplenum = 100 µm
tpassages = 100 µm
Lpassages = 330 µm
Winpassages = 66.7 µm
αvalve = 5 degrees
Simulation uses vertical symmetry plane
Calculations for 100-900 Hz

TDAResearchTDAResearch
1-d Model Procedure
• Setup ANSYS model geometry• For each time step:
– Match ANSYS displacement– Calculate the flow rate, pressures, and
velocity

TDAResearchTDAResearch
Displacement500 Hz
NOTE: Max displacement ~ 3X the diaphragm thickness. Non-linear structural solver should be used.
-30-20-10
0102030
Dis
plac
emen
t (m
icro
ns)
108642
Time (msec)
suct
ion
stro
ke
pressure stroke

TDAResearchTDAResearch
ANSYS Flow FieldMid of Suction
Stroke
Top of Suction Stroke
t = 1 msec
Bottom of Pressure Stroke
t = 2.5 msec
t = 1.5 msec

TDAResearchTDAResearch
Flow Rates700 Hz
-10
-5
0
5
10
Vol
ume
Flow
(mm
3 /sec
)
2.82.62.42.22.01.81.6
Time(msec)
Inlet Outlet Net

TDAResearchTDAResearch
Net Flow Rate
012345678
0 200 400 600 800 1000actuation frequency, Hz
volu
met
ric fl
ow ra
te, c
c/m
in ANSYS net flow
1-d constantdeflection

TDAResearchTDAResearch
Discussion
• Very large discrepancy in results…What does it mean?– Constant displacement of diaphragm vs
non-linear 3-d deflection (factor of 3)– Perfect check valves vs high leakage
valves (factor of 4)– Other? (factor of 2)

TDAResearchTDAResearch
Flow Datadiaphragm & check valve corrections
012345678
0 200 400 600 800 1000actuation frequency, Hz
volu
met
ric fl
ow ra
te, c
c/m
in ANSYS net flowANSYS total flow1-d constant deflection
pyramidal deflection profile
?

TDAResearchTDAResearch
Pressure at Diaphragm Center500 Hz
30x103
20
10
0
Pres
sure
(Pa)
1086420
Time (ms)
Baseline 1-d model peak pressure
Corrected for diaphragm displacement & fluid properties

TDAResearchTDAResearch
Discussion
• Still a large discrepancy (2.0 vs 0.9 cc/min)
• What else?– What is the ANSYS diaphragm displacement
profile?– What will the actual displacement look like?
higher mode response
pyramidalconstant

TDAResearchTDAResearch
Electrostatic Displacement of Diaphragm
Electrostatic-structural coupling only

TDAResearchTDAResearch
Conclusions
• While both models appear to simulate the micropump, there is an unexplained discrepancy between the models.
• Flow is complex, but the simple 1-d model can guide design efforts.

TDAResearchTDAResearch
Future Plans
• Identify source of discrepancy between the ANSYS and 1-d models
• Improve the 1-d model for known deficiencies– Stokes time-dependent flow vs steady Poiseuille
flow• fluid inertial force proportional to actuation frequency• introduces phase shift
– improved software or solution methodology– 3-d pyramidal diaphragm displacement
Add stokes equation

TDAResearch
Modeling an Electrostatically Actuated MEMS Diaphragm
Pump – Part IIIJames Nabity27 Apr 2004
Submitted in partial requirements of Fluid-Structures Interactions Class (ASEN 5519-006)

TDAResearchTDAResearch
Acknowledgements
• ONR SBIR Phase II “Liquid Fuel Atomizer” sponsored by Dr. Chris Brophy
• ANSYS simulations performed by Mr. Gopi Krishnan under AFOSR grant sponsored by Dr. Mitat Birkan

TDAResearchTDAResearch
Outline
• Recent Accomplishments• Review 1-D and ANSYS Models• Problem Found !!!• Some Simulation Results• Conclusions

TDAResearchTDAResearch
Recent Accomplishments
Discrepancy between the ANSYS and 1-d models found1-d model improvements
improved MathCAD solution methodology using EXCEL files to close iteration loop and store data3-d pyramidal diaphragm displacement implemented

TDAResearchTDAResearch
1-D Model
( ) ( ) eeffCV
pAAtApAtAhLdV
dtdApAt ||||)(|12|| 2
222
112 +=+=⋅−
++ ∫∫∫ υρυρυµυρυρ vvvv
L = w
1 2 e
-md2ydt2
Fe Fk
yP-+
fillcycle
expulsioncycle
∞
CV
h0
τw
L
∑ ∫∫∫
++−+==
CVkey dV
dtyd
dtdgmApFFF
vvvvv
ρ0
( ) ( )dtdVolAtAtm ee ρυρυρ −== 1|| vv
&Continuity:
( )∫∫∫∫∫∫∫∫ ++
++−
++=∆
f
i
y
ykeoutinCV dyFFdmpudmpuEdmvv
|2
|2
|22 υ
ρυ
ρ
x momentum:ΣF of diaphragm:
inertial terms << loads and may be neglectedEnergy: adiabatic, unreacting flow

TDAResearchTDAResearch
ANSYS MODEL
Diaphragm
Plenum
Outlet
Inlet

TDAResearchTDAResearch
Flow Data Comparisondiaphragm & check valve corrections
012345678
0 200 400 600 800 1000actuation frequency, Hz
volu
met
ric fl
ow ra
te, c
c/m
in ANSYS net flowANSYS total flow1-d constant deflection
pyramidal deflection profile
???
Kd = 1
Kd = 1/3

TDAResearchTDAResearch
Recall: ANSYS Model
Only ½ of the pump was modeled.
Therefore, calculated flow was only ½ of the total pump capacity !!!

TDAResearchTDAResearch
Flow DataANSYS flow corrected for symmetry b.c.
012345678
0 200 400 600 800 1000actuation frequency, Hz
volu
met
ric fl
ow ra
te, c
c/m
in ANSYS net flowANSYS total flow1-d constant deflection
pyramidal deflection profile

TDAResearchTDAResearch
Micropump performance
• Now what is the performance of a micropump ?
• Given:– 1cm x 1cm x 50um micropump chamber– 50um thick metal diaphragm– Jet fuel

TDAResearchTDAResearch
Diaphragm Displacement ( ½ cycle )
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
0 1 2 3 4 5 6 7
time, msec
h, u
m
-2.0
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
18.0
0 1 2 3 4 5 6 7
time, msec
y, u
m
electrostatic – spring force during compression
electrostatic + spring force during release
neutral position
neutral position
compression release
compression
release
f = 83 Hz

TDAResearchTDAResearch
Micropump Flowrate( ½ cycle)
0.00
5.00
10.00
15.00
20.00
25.00
0 1 2 3 4 5 6 7
time, msec
Q, c
c/m
in
compression
release
f = 83 Hz
Recall that Q is proportional to gap height cubed

TDAResearchTDAResearch
1-D model micropump performance
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
0 50 100 150 200 250 300
f, Hz
Q, c
c/m
in
Optimal frequency likely near knee of curve.
Experimental tests needed to confirm.

TDAResearchTDAResearch
Scaling Law
• Flowrate proportional to– displaced volume (i.e. atomizer size)– actuation voltage– actuation frequency
V fVoltsQ disp ⋅⋅α&
Proportionality constant still 0.0025, if displaced volume now equal to Kd*(y*w2)

TDAResearchTDAResearch
Conclusions
• 1-D Micropump Model Developed for Parametric Studies
• Approximately 15% Error in Results

TDAResearchTDAResearch
What’s Left ?
• Implement Stokes time-dependent flow to solve for velocity
• fluid inertial force proportional to actuation frequency
• introduces phase shift
• Unfortunately, problem reformulation likely
uptu vvv 2∇+−∇=∂∂ µρ