Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release...

68
TDA Research Modeling an Electrostatically Actuated MEMS Diaphragm Pump – Part I James Nabity 9 Mar 2004 Submitted in partial requirements of Fluid-Structures Interactions Class (ASEN 5519-006)

Transcript of Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release...

Page 1: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearch

Modeling an Electrostatically Actuated MEMS Diaphragm

Pump – Part IJames Nabity9 Mar 2004

Submitted in partial requirements of Fluid-Structures Interactions Class (ASEN 5519-006)

Page 2: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Acknowledgements

• ONR SBIR Phase II “Liquid Fuel Atomizer” sponsored by Dr. Chris Brophy

• ANSYS simulations performed by Mr. Gopi Krishnan under AFOSR grant sponsored by Dr. Mitat Birkan

Page 3: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Outline

• Background & Motivation• Objective• What have others done ?• Modeling & Simulation

– 1-d Model– ANSYS

• Conclusions• Future Plans

Page 4: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

BackgroundSeiko Epson TM-8000J configuration

Can inkjet technology be applied to other applications???

Page 5: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Motivation

• Can inkjet technology be applied to other applications???– Yes…optics, automotive & aerospace

• Analysis tools required for design, BUT commercial CFD/FEA software packages are usually difficult to learn and use

• Comprehensive models difficult to develop• THUS, simple and reasonably accurate

model(s) are required to quickly evaluate design potential

Page 6: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Micropump for Aerospace

micropump chamber

diaphragm supports at exit port

fluid check valves

Page 7: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Objective

• Develop, validate and exercise a simplequasi 1-d control volume based model

– Capture important physics– Apply to liquid fuels

• Simulate micropump w/ ANSYS

Page 8: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

What have others done?

• Control-volume or lumped-mass models– L.S. Pan, et al, “Analytical solutions for the dynamic analysis

of a valveless micropump—a fluid-membrane coupling study,” Sensors and Actuators A 93 (2001) pp 173-181

– Anders Olsson, et al, “A numerical design study of the valveless diffuser pump using a lumped-mass model,” J. Micromech. Microeng. 9 (1999) pp 34-44

• Numerical modeling– Nam-Trung Nguyen, “Numerical Simulation of Pulse-Width-

Modulated Micropumps with Diffuser/Nozzle Elements”– Gopi Krishnan, PhD candidate, U of Colorado-Boulder

Page 9: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Physical Model Comparison

• Nabity

• Pan et al

• Olsson et al

• Nguyen et al

L = w

1 2 e

-md2ydt2

Fe Fk

yP-+

fillcycle

expulsioncycle

CV

h0

τw

LL = w

1 2 e

-md2ydt2

Fe Fk

yP-+

fillcycle

expulsioncycle

CVCV

h0

τw

L

Page 10: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

1-D Model Developent

Page 11: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Model Formulation

( ) ( ) eeffCV

pAAtApAtAhLdV

dtdApAt ||||)(|12|| 2

222

112 +=+=⋅−

++ ∫∫∫ υρυρυµυρυρ vvvv

L = w

1 2 e

-md2ydt2

Fe Fk

yP-+

fillcycle

expulsioncycle

CV

h0

τw

L

∑ ∫∫∫

++−+==

CVkey dV

dtyd

dtdgmApFFF

vvvvv

ρ0

( ) ( )dtdVolAtAtm ee ρυρυρ −== 1|| vv

&Continuity:

( )∫∫∫∫∫∫∫∫ ++

++−

++=∆

f

i

y

ykeoutinCV dyFFdmpudmpuEdmvv

|2

|2

|22 υ

ρυ

ρ

x momentum:ΣF of diaphragm:

inertial terms << loads and may be neglectedEnergy: adiabatic, unreacting flow

Page 12: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Assumptions

• 1-d adiabatic, incompressible flow• Uniform velocity profile• Unsteady, but assume quasi-static

Hagen-Poiseuille flow during each time step

• Perfect check valve• Diaphragm displaced uniformly

Page 13: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Poiseuille Flow(parallel plates)

h

u(y)

dyyduw

dyd

dxdP

lam)(/0 µττ

=+−=

dxdP

dyud=2

Integrate twice and apply no slip boundary conditions at the wall

dxdPhcc

µ8&0

2

21 −==

From x-momentum

( ) ( )22 481 yhdxdPyu −−=

µ

Now, flow rate can be found for large plate width

( )∫−

−=⋅=2

2

3

12

h

hdxdPwhwdyyuQ

µ

Page 14: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Flat Plate Assumptions

• thin flat plates (t/w < ¼) of uniform thickness and of homogeneous isotropic material; actual t/w = 0.005

• fixed edges with a uniformly distributed load

• the maximum deflection under load must be very small; y < t/2 (y = t possible for our pump)

• all forces are normal to the plate• the diaphragm is nowhere stressed beyond

the elastic limit

Page 15: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Simplified Equations

• continuity

• x-momentum (CV1-2 for example)

• ∑Fy = 0

v 2

w2 ∆y∆t⋅

w h⋅:=

P 1 w2⋅ F e F k+

∆M ρ JP10 v 12

⋅ P 1+

w⋅ G f⋅ ρ JP10 v 2⋅ Q disp⋅+

12 µ f⋅ L star⋅ w⋅ v 2⋅

Gf− ρ JP10 v 2

2⋅ +

−:=

ve

w2 ∆y∆t⋅

wn hn⋅:=

P 2 w⋅ Gf⋅

Page 16: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Forces on Diaphragm

• Pressure

• Electrostatic

• Spring

ke FFwP +=⋅ 21

F e w2

12ε o⋅ ε f⋅ ε d

2⋅ Vi

2⋅

ε d h 0 y−( )⋅ ε f Gd⋅+ 2

:=

F ky E⋅ t d

3⋅

α w4⋅

− w2⋅:=

Roark’s Formulas for Stress and Strain, McGraw-Hill Publishing Co, 7th Edition, 2002

Page 17: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Energy Equation

∆E system ∆E 1 ∆E 2− ∆E e+ ∆E k− ∆E CV−:=

∆Ei uiPi

ρ fuel+

vi2

2+

ρ fuel⋅ Qi⋅ ∆t⋅:= ui boundary work + KE

∆E e

y i

y f

y

12ε o⋅ ε f⋅ ε d

2⋅ Vi

2⋅

ε d h 0 y−( )⋅ ε f Gd⋅+ 2

A diaphragm

⌠⌡

d:=

∆E k

y i

y f

yy E⋅ t d

3⋅

α w4⋅

A diaphragm

⌠⌡

d:=

electrostatic

spring

∆E CV u 1v 2

2

2+

P 1 P 2+( )2ρ JP10

+

− ρ JP10⋅ Q 2 Q 1−( )⋅ ∆t⋅:= work inside deforming control volume

Page 18: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

SS302 Diaphragm Mat’l Properties

• Density (8.0 gm/cc)• Yield Strength (276 MPa)• Modulus of Elasticity (20,700 MPa)• Poisson’s Ratio (0.3)

Page 19: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Thermally Grown Oxide Dielectric Layer

• Limits the Maximum Applied Voltage– Dielectric Constant (3.8)– Voltage Breakdown Strength (1000 V/µm)– MAX thickness about 3 µm

Page 20: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

JP-10 Fuel Properties@ 25°C

• Density (0.938 gm/cc)• Viscosity (0.003 kg/m-s)• Specific Heat (1.55 kJ/kg-K)• Surface Tension (0.031 N/m)• Dielectric Constant (2.46)

Page 21: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

MathCAD Solution Methodology #1

• Solution entails one-half cycle– Electrostatic pull-in– Release to neutral position

Neutral position Release to neutral position

Electrostatic Actuation

Page 22: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

MathCAD Solution Methodology #2

• Setup geometry– Chamber length & height– Exit port length & height

• Define parameters– Voltage– Time step– and more

• Define initial conditions (displacement)

Page 23: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

MathCAD Solution Methodology #3

• Calculate:– Electrostatic force– Spring force– Upstream pressure– Simultaneously solve for:

• Displacement• Volumetric flow rate• Downstream Pressure

– Check conservation of mass, momentum & energy– Repeat for next time step

Page 24: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Initial ANSYS Results

L*y(t)

w

0

5

10

15

20

0 2 4 6

t, msec

y(t),

um

1-d modelANSYS

010

2030

4050

6070

80

0 2 4 6

t, msec

P, p

si

L* = wL* = w/20 < L* < wANSYS

w = 10000umh = 50um

Gopi Krishnan, Mesh and Time Dependence Study (ANSYS results) Apr 2002

Page 25: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Additional ANSYS Results

volumetric flowrate

0102030405060708090

0 2 4 6

t, msec

V, c

c/m

in

L* = wL* = w/20 < L* < wANSYS

.

velocity

0

1

2

3

0 2 4 6

t, msec

vexi

t, m

/s

L* = wL* = w/20 < L* < wANSYS

Discrepancy largely due to difference in the diaphragm displacement profile (+20% at 1 msec) for ANSYS case

Page 26: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Parametric Analysis

• Characteristic length for Poiseuille pressure loss ( & nominally )

• Actuation voltage & frequency• Pump Size• Supply pressure

wL t <∆f

t GwywL

⋅∆⋅

=∆

2

Page 27: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Actuation Voltage

0

10

20

30

40

50

0 1 2 3 4 5

t, msec

P, p

si

1000V5000V

0

1

2

3

4

5

6

0 1 2 3 4 5t, msec

vexi

t, m

/s

1000V5000V

0

25

50

75

100

125

150

175

0 1 2 3 4 5

t, msec

V, c

c/m

in

1000V5000V

0

5

10

15

20

25

30

35

0 1 2 3 4 5

t, msec

y(t),

um

1000V5000V

.

w = 10000umh = 50um

Page 28: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Actuation Frequency

0

5

10

15

20

25

30

35

0 1 2 3 4 5

t, msec

y(t),

um

130 Hz290 Hz

w = 10000umh = 50umV = 1000V

0

25

50

75

100

125

150

175

200

0 1 2 3 4 5

t, msec

V, c

c/m

in

130 Hz290 Hz

0

1

2

3

4

5

6

7

0 1 2 3 4 5t, msec

vexi

t, m

/s

130 Hz290 Hz

0

10

20

30

40

50

0 1 2 3 4 5

t, msec

P, p

si

130 Hz290 Hz

Page 29: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Pump Size

0

5

10

0 1 2 3 4 5

t, msec

y(t),

um

10000um x 10000um x 50um

5000um x 5000um x 25um

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

t, msec

P, p

si

10000um x 10000um x 50um

5000um x 5000um x 25um

V = 1000V

0

1

2

0 1 2 3 4 5t, msec

vexi

t, m

/s

10000um x 10000um x 50um

5000um x 5000um x 25um

0

5

10

15

20

25

30

0 1 2 3 4 5

t, msec

V, c

c/m

in

10000um x 10000um x 50um5000um x 5000um x 25um

Page 30: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Scaling Law

• Flowrate proportional to– displaced volume (i.e. atomizer size)– actuation voltage– actuation frequency

V fVQ disp ⋅⋅α&

Proportionality constant is 0.0025

Page 31: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Conclusions

• A MathCAD model developed for parametric evaluation of electrostatically actuated diaphragm pumps– MathCAD not well suited to iterative problems– predictions appear qualitatively correct– quantitative accuracy, yet to be validated

• Weaknesses– steady 1-d Poiseuille flow– uniform diaphragm deflection

Page 32: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Next Class Period

• Comparison with ANSYS linear solution results for a model problem

• Future work

Page 33: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearch

Modeling an Electrostatically Actuated MEMS Diaphragm

Pump – Part II

James Nabity11 Mar 2004

Submitted in partial requirements of Fluid-Structures Interactions Class (ASEN 5519-006)

Page 34: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Acknowledgements

• ONR SBIR Phase II “Liquid Fuel Atomizer” sponsored by Dr. Chris Brophy

• ANSYS simulations performed by Mr. Gopi Krishnan under AFOSR grant sponsored by Dr. Mitat Birkan

Page 35: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

ANSYS Model Development

Page 36: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Model Pump with Passive Valves

Diaphragm

Plenum

Outlet

Inlet Works because flow resistance is less in outlet direction

Page 37: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Numerical Methods

• ANSYS Multi-physics finite element code is used to carry out simulation:– Weak sequential algorithm to couple structural

and fluid dynamics (FSI module),– Linear structural solver,– Arbitrary Lagrangian-Eulerian formulation solves

for the fluid flow with moving boundaries, – Fluid dynamics is solved using ANSYS FLOTRAN

(Flow treated as incompressible),– Non-linear pressure velocity coupling via

SIMPLEF scheme

Page 38: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Linear vs Non-linear Solver

0

5

10

15

20

25

30

0 10 20 30 40 50 60

Pressure ( KPa )

Defle

ctio

n ( m

icro

ns )

linear non linear

Page 39: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Mesh

Issues:-contact: mesh thickness can’t be zero-mesh refinement: educational version

limited to 32,000 elements

Fluid: FLOTRAN FLUID142 elementsStructure: SOLID 54 elements

Page 40: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

ANSYS Pump GeometryTime Dependent 3-D Simulation

Diaphragm

Plenum

Outlet

Inlet Ldiaph = 1000 µm

tdiaph = 10 µm

tplenum = 100 µm

tpassages = 100 µm

Lpassages = 330 µm

Winpassages = 66.7 µm

αvalve = 5 degrees

Simulation uses vertical symmetry plane

Calculations for 100-900 Hz

Page 41: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

1-d Model Procedure

• Setup ANSYS model geometry• For each time step:

– Match ANSYS displacement– Calculate the flow rate, pressures, and

velocity

Page 42: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Displacement500 Hz

NOTE: Max displacement ~ 3X the diaphragm thickness. Non-linear structural solver should be used.

-30-20-10

0102030

Dis

plac

emen

t (m

icro

ns)

108642

Time (msec)

suct

ion

stro

ke

pressure stroke

Page 43: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

ANSYS Flow FieldMid of Suction

Stroke

Top of Suction Stroke

t = 1 msec

Bottom of Pressure Stroke

t = 2.5 msec

t = 1.5 msec

Page 44: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Flow Rates700 Hz

-10

-5

0

5

10

Vol

ume

Flow

(mm

3 /sec

)

2.82.62.42.22.01.81.6

Time(msec)

Inlet Outlet Net

Page 45: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Net Flow Rate

012345678

0 200 400 600 800 1000actuation frequency, Hz

volu

met

ric fl

ow ra

te, c

c/m

in ANSYS net flow

1-d constantdeflection

Page 46: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Discussion

• Very large discrepancy in results…What does it mean?– Constant displacement of diaphragm vs

non-linear 3-d deflection (factor of 3)– Perfect check valves vs high leakage

valves (factor of 4)– Other? (factor of 2)

Page 47: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Flow Datadiaphragm & check valve corrections

012345678

0 200 400 600 800 1000actuation frequency, Hz

volu

met

ric fl

ow ra

te, c

c/m

in ANSYS net flowANSYS total flow1-d constant deflection

pyramidal deflection profile

?

Page 48: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Pressure at Diaphragm Center500 Hz

30x103

20

10

0

Pres

sure

(Pa)

1086420

Time (ms)

Baseline 1-d model peak pressure

Corrected for diaphragm displacement & fluid properties

Page 49: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Discussion

• Still a large discrepancy (2.0 vs 0.9 cc/min)

• What else?– What is the ANSYS diaphragm displacement

profile?– What will the actual displacement look like?

higher mode response

pyramidalconstant

Page 50: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Electrostatic Displacement of Diaphragm

Electrostatic-structural coupling only

Page 51: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Conclusions

• While both models appear to simulate the micropump, there is an unexplained discrepancy between the models.

• Flow is complex, but the simple 1-d model can guide design efforts.

Page 52: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Future Plans

• Identify source of discrepancy between the ANSYS and 1-d models

• Improve the 1-d model for known deficiencies– Stokes time-dependent flow vs steady Poiseuille

flow• fluid inertial force proportional to actuation frequency• introduces phase shift

– improved software or solution methodology– 3-d pyramidal diaphragm displacement

Add stokes equation

Page 53: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearch

Modeling an Electrostatically Actuated MEMS Diaphragm

Pump – Part IIIJames Nabity27 Apr 2004

Submitted in partial requirements of Fluid-Structures Interactions Class (ASEN 5519-006)

Page 54: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Acknowledgements

• ONR SBIR Phase II “Liquid Fuel Atomizer” sponsored by Dr. Chris Brophy

• ANSYS simulations performed by Mr. Gopi Krishnan under AFOSR grant sponsored by Dr. Mitat Birkan

Page 55: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Outline

• Recent Accomplishments• Review 1-D and ANSYS Models• Problem Found !!!• Some Simulation Results• Conclusions

Page 56: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Recent Accomplishments

Discrepancy between the ANSYS and 1-d models found1-d model improvements

improved MathCAD solution methodology using EXCEL files to close iteration loop and store data3-d pyramidal diaphragm displacement implemented

Page 57: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

1-D Model

( ) ( ) eeffCV

pAAtApAtAhLdV

dtdApAt ||||)(|12|| 2

222

112 +=+=⋅−

++ ∫∫∫ υρυρυµυρυρ vvvv

L = w

1 2 e

-md2ydt2

Fe Fk

yP-+

fillcycle

expulsioncycle

CV

h0

τw

L

∑ ∫∫∫

++−+==

CVkey dV

dtyd

dtdgmApFFF

vvvvv

ρ0

( ) ( )dtdVolAtAtm ee ρυρυρ −== 1|| vv

&Continuity:

( )∫∫∫∫∫∫∫∫ ++

++−

++=∆

f

i

y

ykeoutinCV dyFFdmpudmpuEdmvv

|2

|2

|22 υ

ρυ

ρ

x momentum:ΣF of diaphragm:

inertial terms << loads and may be neglectedEnergy: adiabatic, unreacting flow

Page 58: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

ANSYS MODEL

Diaphragm

Plenum

Outlet

Inlet

Page 59: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Flow Data Comparisondiaphragm & check valve corrections

012345678

0 200 400 600 800 1000actuation frequency, Hz

volu

met

ric fl

ow ra

te, c

c/m

in ANSYS net flowANSYS total flow1-d constant deflection

pyramidal deflection profile

???

Kd = 1

Kd = 1/3

Page 60: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Recall: ANSYS Model

Only ½ of the pump was modeled.

Therefore, calculated flow was only ½ of the total pump capacity !!!

Page 61: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Flow DataANSYS flow corrected for symmetry b.c.

012345678

0 200 400 600 800 1000actuation frequency, Hz

volu

met

ric fl

ow ra

te, c

c/m

in ANSYS net flowANSYS total flow1-d constant deflection

pyramidal deflection profile

Page 62: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Micropump performance

• Now what is the performance of a micropump ?

• Given:– 1cm x 1cm x 50um micropump chamber– 50um thick metal diaphragm– Jet fuel

Page 63: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Diaphragm Displacement ( ½ cycle )

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0 1 2 3 4 5 6 7

time, msec

h, u

m

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0 1 2 3 4 5 6 7

time, msec

y, u

m

electrostatic – spring force during compression

electrostatic + spring force during release

neutral position

neutral position

compression release

compression

release

f = 83 Hz

Page 64: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Micropump Flowrate( ½ cycle)

0.00

5.00

10.00

15.00

20.00

25.00

0 1 2 3 4 5 6 7

time, msec

Q, c

c/m

in

compression

release

f = 83 Hz

Recall that Q is proportional to gap height cubed

Page 65: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

1-D model micropump performance

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 50 100 150 200 250 300

f, Hz

Q, c

c/m

in

Optimal frequency likely near knee of curve.

Experimental tests needed to confirm.

Page 66: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Scaling Law

• Flowrate proportional to– displaced volume (i.e. atomizer size)– actuation voltage– actuation frequency

V fVoltsQ disp ⋅⋅α&

Proportionality constant still 0.0025, if displaced volume now equal to Kd*(y*w2)

Page 67: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

Conclusions

• 1-D Micropump Model Developed for Parametric Studies

• Approximately 15% Error in Results

Page 68: Quasi 1-d Modeling of an Electrostatically Acuated … | 2 υ2 ρ υ ρ x momentum: ... – Release to neutral position Neutral position Release to neutral position Electrostatic ...

TDAResearchTDAResearch

What’s Left ?

• Implement Stokes time-dependent flow to solve for velocity

• fluid inertial force proportional to actuation frequency

• introduces phase shift

• Unfortunately, problem reformulation likely

uptu vvv 2∇+−∇=∂∂ µρ