Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A...

61
Quantum Fluxes during Chemical Reactions Jörn Manz Freie Universität Berlin Workshop on Quantum Dynamic Imaging Montreal, Canada 20.10.2009

Transcript of Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A...

Page 1: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Quantum Fluxes during Chemical Reactions

Jörn ManzFreie Universität Berlin

Workshop on Quantum Dynamic ImagingMontreal, Canada

20.10.2009

Page 2: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Agenda

Introduction

Applications to electronic fluxes

Applications to nuclear fluxes

Applications to concerted electronic and nuclear fluxes

Page 3: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Flux densities and fluxes: Nomenclature

Probability density ρ, dimension 1/volume

Flux density j, dimension 1/(time x area)also called “current density”

Flux F, dimension 1/timealso called “current”

Yield Y, dimension 1also called “probability”

I. Barth, H.-C. Hege, H. Ikeda, A. Kenfack, M. Koppitz, J. Manz, F. Marquardt, G.K. Paramonov, Chem. Phys. Lett. 481, 118 (2009)

2Ψ=ρ

∫∫ =−=obsobs VV

obs dVtdVtAtY )0( )();( ρρ

∫ ⋅−=obsA

obs dtAtF Aj )();(

( )**

2Ψ∇Ψ−Ψ∇Ψ−=

mihj

Example: one particle in 3D

Page 4: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Continuity equations and Gauss’s theorem

Continuity equationfor the electronfor the k-th nucleus

Gauss’s theorem

key equation

),(),(),(),(

,, tttt

knuknu

elel

RjRrjr

R

r

⋅−∇=⋅−∇=

ρρ

&

&

);( )( )()();( obsVVA

obs AtYdVtdVtdtAtFobsobsobs

&& ==⋅∇−=⋅−= ∫∫∫ ρjAj

dVtAtFobsV

obs )();( ∫= ρ&

I. Barth, H.-C. Hege, H. Ikeda, A. Kenfack, M. Koppitz, J. Manz, F. Marquardt, G.K. Paramonov, Chem. Phys. Lett. 481, 118 (2009)

Page 5: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Heaviside function and flux operator

Heaviside function h(Vobs) flux = time derivative of the mean value of h(Vobs)

Nuclear flux operator by W.H. Miller

in Schrödinger picture

in Heisenberg picture

W.H. Miller, J. Chem. Phys. 61, 1823 (1974)W.H. Miller, Acc. Chem. Res. 26, 174 (1993)W.H. Miller, J. Phys. Chem. A 102, 793 (2008)

[ ])(,)( )( )( )();( obsobsobsVV

obs VhHiVhdtddVVhtdVtAtF

obsh

&& ==== ∫∫ ρρ

[ ]

)(

)(,

obs

obs

Vhdtd

VhHih

Page 6: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Nuclear flux operator: Applications

Thermal reaction rate constant k(T)H2 + OH H + H20

H + CH4 H2 + CH3

U. Manthe, T. Seideman, W.H. Miller, J. Chem. Phys. 101, 4759 (1994)T. Wu, H.-J. Werner, U. Manthe, Science 306, 2227 (2004)

Page 7: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Motivation: Nuclear and electron fluxes

Cope rearrangement in organic chemistry1,5-hexadiene or derivatives

I. Barth, H.-C. Hege, H. Ikeda, A. Kenfack, M. Koppitz, J. Manz, F. Marquardt, G.K. Paramonov, Chem. Phys. Lett. 481, 118 (2009)

Page 8: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Dilemma of the BO approximation

Born-Oppenheimer (BO) approximation

excellent for densities and nuclear flux densities⇒ powerful for quantum chemistry and nuclear dynamicsBUT: electronic flux densities are zero because of real electronic wavefunctions in non-degenerate states

Continuity equation for the electron is not valid in BO

);( ),(),,( ,, QqQQq elBOnuBOBO tt ΨΨ=Ψ

0rj =),(, telBO

),(),( ,, tt elBOelBO rjr r ⋅−∇≠ρ&0),( :generalin , ≠telBO rρ&

I. Barth, H.-C. Hege, H. Ikeda, A. Kenfack, M. Koppitz, J. Manz, F. Marquardt, G.K. Paramonov, Chem. Phys. Lett. 481, 118 (2009)

Page 9: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Schematic overviewgeneral

j ρ

F Y

flux density

flux yield

density

continuity equation

Gauss’stheorem

∫ ⋅−=obsA

dF Aj

j⋅−∇=ρ&

=

obs

obs

V

V

dV

dVtY

)0(

)(

ρ

ρ

YF &=

dVFobsV

∫ ⋅∇−= j

I. Barth, H.-C. Hege, H. Ikeda, A. Kenfack, M. Koppitz, J. Manz, F. Marquardt, G.K. Paramonov, Chem. Phys. Lett. 481, 118 (2009)

Page 10: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Schematic overviewgeneral BO for the electron

j ρ

F Y

flux density

flux yield

density

continuity equation

Gauss’stheorem

∫ ⋅−=obsA

dF Aj

j⋅−∇=ρ&

=

obs

obs

V

V

dV

dVtY

)0(

)(

ρ

ρ

YF &=

dVFobsV

∫ ⋅∇−= j

ρ

F Y

flux density

flux yield

density

continuity equation

Gauss’stheorem

∫ ⋅−=obsA

dF Aj

j⋅−∇=ρ&

=

obs

obs

V

V

dV

dVtY

)0(

)(

ρ

ρ

YF &=

dVFobsV

∫ ⋅∇−= j

j = 0

I. Barth, H.-C. Hege, H. Ikeda, A. Kenfack, M. Koppitz, J. Manz, F. Marquardt, G.K. Paramonov, Chem. Phys. Lett. 481, 118 (2009)

Page 11: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Agenda

Introduction

Applications to electronic fluxesElectron impact dynamics: e− + H2

+ (2D)Electronic ring current: Mg-porphyrin, AlCl, atoms (multi-D)

Applications to nuclear fluxes

Applications to concerted electronic and nuclear fluxes

Page 12: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Attosecond electron impact dynamics:quantum model simulation for e− + H2

+

Axel Schild with kind support by Ingo Barth

Page 13: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

New method of investigation of attosecond electron dynamics:Zewail proposed compression of ~30 keV electron pulse to 15 as withthe help of a moving intensity gratingP. Baum, A.H. Zewail, Chem. Phys 2009, special issue Attosecond MolecularDynamics (Eds. Bandrauk, Manz, Vrakking)

Do high-energy electrons change the target?

This work: Quantum model scattering of 0.5 – 1.5 keV electron off H2+

e + H2+ H2

+ + eH2

+* + e ?p + p + e + e ?...

Motivation

Page 14: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

The model

z1, z2 electron distance from c.o.m.internuclear distance R kept fixed

one-dimensional H2-molecule:

Solved with WavePacket program / Split-Operator method(B. Schmidt, U. Lorenz, http://wavepacket.sourceforge.net)

Page 15: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

to reproduce electronicexcitation energies of H2:

c = 0.7 a02, d = 1.2375 a0

2

adapted from

A.D. Bandrauk, S. Chelkowski,

S. Kawai, H. Lu,

PRL 101, 153901, 2008

R = 1.9879 a0 Eh

The model

Page 16: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

R = 1.9879 a0

ε01 = 0.461 Eh

compare:

ε01 = 0.435 Eh

(J.M. Peek, J. Chem. Phys.

43, 3004, 1965)

h

The model

Page 17: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

D.J. Tannor, Introduction to Quantum Mechanics –A Time Dependent Perspective

(University Science Books: USA 2007)

Product of Gaussian in z1-direction with ground state of H2

+ in z2-direction:

distinguishable electrons

Kinetic energy: ~ 544 eV

Initial state

Page 18: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Electron dynamics

Page 19: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Time-dependent scattering theory

causes electron correlation

Page 20: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Expansion in terms of elastic wavefunctions:

Time-dependent scattering theory

TDSE

Initial state

for reference: elastic scattering

Page 21: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Time evolution

Dispersion, but little trace of the scatteringevent→ major part is elastic scattering

R = 1.9879 a0

Page 22: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

→ Two oscillating parts, head and tail

Period T = 329 as, hν = 0.462 Eh compare ε01 = 0.461 Eh

Time evolution

Page 23: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

→ no oscillation

removing further contributionsfor j > 1 has no visible effect on the density

,1

Time evolution

Page 24: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Electronic flux density

Page 25: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Electronic flux density

Page 26: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Electronic flux density

Page 27: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Mechanism

redirection along z2

→ oscillation

two minima

→ two parts

Page 28: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Take home message: 1) Analysis of mechanisms by flux density

2) Experiment by Baum & Zewail is promising!

e + H2+ H2

+ + eH2

+* + e (< 3 ·10-3)p + p + e + e)(

Conclusion

Page 29: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

I. Barth, J. Manz, Y. Shigeta, K. Yagi, J. Am. Chem. Soc. 128, 7043 (2006)I. Barth, J. Manz, Angew. Chem. Int. Ed. 45, 2962 (2006)

I. Barth, J. Manz, Phys. Rev. A 75, 012510 (2007) I. Barth, J. Manz, L. Serrano-Andrés, Chem. Phys. 347, 263 (2008)

I. Barth, L. Serrano-Andrés, T. Seideman, Chem. Phys. 347, 263 (2008)I. Barth, PhD thesis, FU Berlin (2009)

Control of electronic ring currentsby circularly polarized laser pulses

Page 30: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

)()( tdtdt cc ±± −= AE

)(rj±

)(rB±

Concept

related: inverse Faraday effect

Page 31: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Model assumptions for ring currents

Fixed orientation of moleculeH. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)

M. Leibscher, I. S. Averbukh, H. Rabitz, Phys. Rev. A 69, 013402 (2004)

E. Hamilton, T. Seideman, T. Ejdrup, M. D. Poulsen, C. Z. Bisgaard, S. S. Viftrup, H. Stapelfeldt, Phys. Rev. A 72, 043402 (2005)

I. Barth, L. Serrano-Andrés, T. Seideman, Chem. Phys. 347, 263 (2008)

Transition from ground state

No spin-orbit interaction, spin conservation

Page 32: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Electronic degenerate orbitals/states

atom or atomic ion

axialsymmetric

linear molecule

axialsymmetric

ring-shapedmolecule

non-axialsymmetric

( )yx PiPP ±=± 21

( )yx i Π±Π=Π± 21

( )yx EiEE ±=± 21

Page 33: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Model: Magnesium porphyrin (MgP)

Ground state: X1A1g

Symmetry: D4h

Chlorophyll c1, c2

Chlorophyll a, b, d

Page 34: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Selective population transfer by means of a right circ. pol. optimized π laser pulse with cos20 envelope

Electronic ring currents in MgP

+→ ug EnAX 11

1

Ex, Ey, I

+uE1 2 +uE1 4

τ = 2.5 fs τ = 2.5 fsEx

Ec+

Ey

Difference of the electronic probability density

(green) 0),((red) 0),(

<Δ>Δ

tt

rr

ρρ

I. Barth, J. Manz, Y. Shigeta, K. Yagi, J. Am. Chem. Soc. 128, 7043 (2006)I. Barth, C. Lasser, J. Phys. B (2009), in pressI. Barth, PhD thesis, FU Berlin (2009)

Page 35: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

I. Barth, J. Manz, Y. Shigeta, K. Yagi,J. Am. Chem. Soc. 128, 7043 (2006)

E. Steiner et al, Org. Biomol. Chem. 3, 4053 (2005)J. Jusélius et al, J. Org. Chem. 65, 5233 (2000)

06.32 84.5 A0.159 Tind

r aI

=

==

laser pulse permanent magnetic field

T 8048 ifA 5.84 85.6 0

==

=

BIar

μPresent technology:

< 100 T (permanent), 34000 T (10 ps)(Rossendorf / Dresden, Rutherford Appleton)

Electronic ring currents in MgP

Page 36: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

I. Barth, J. Manz, Y. Shigeta, K. Yagi,J. Am. Chem. Soc. 128, 7043 (2006)

laser pulse permanent magnetic field

E. Steiner et al, Org. Biomol. Chem. 3, 4053 (2005)J. Jusélius et al, J. Org. Chem. 65, 5233 (2000)

T 8048 ifA 5.84 85.6 0

==

=

BIar

μPresent technology:

< 100 T (permanent), 34000 T (10 ps)(Rossendorf / Dresden, Rutherford Appleton)

Electronic ring currents in MgP

strong ring currentactive control

Page 37: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

I. Barth, J. Manz, Angew. Chem. Int. Ed. 45, 2962 (2006), Angew. Chem. 118, 3028 (2006)I. Barth, J. Manz, in: A.W. Castleman, Jr., M.L. Kimble (eds.), Femtochemistry VII: Fundamental

Ultrafast Processes in Chemistry, Physics, and Biology (Elsevier, Amsterdam, 2006), p. 441

Half population transfer by means of a right circ. pol. optimized π/2 laser pulse with cos20 envelope

Period of the electronic density

Electron circulation in MgP

+→ ug EnAX 11

1

(cyan) 0),( (blue), 0),( <Δ>Δ tt rr ρρ: 5 1

±uE as 907/2 5050 == ωπτ

τ = 2.5 fsEx

Ec+

Ey

Page 38: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

I. Barth, J. Manz, L. Serrano-Andrés, Chem. Phys. 347, 263 (2008)I. Barth, L. Serrano-Andrés, T. Seideman, J. Chem. Phys. 129, 164303 (2008); 130, 109901(E) (2009)

Electronic ring currents in AlCl and BeO

Complete population transfer by means of a right circ. pol. optimized π laser pulse with cos20 envelope

Ex, Ey, I

AlCl BeO

Difference of the electronic probability density

(green) 0),((red) 0),(

),(),(),( 0

<Δ>Δ

−=Δ

tt

ttt

rr

rrr

ρρ

ρρρ

τ = 2.5 fs τ = 2.5 fs

++ Π→Σ 11 AX

Page 39: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

AlCl

( )h 1

T 68.7Alas 396

A 405

18.0

,

0

11

=

===

=−−

elz

ind

L

BTI

ar

μ

( )h 5.2

T 16.0Mgfs 901

A 5.84 32.6

,

0

===

=

elz

ind

L

B.T

Iarμ

MgP

( ) zRI e0rB

20μ

−≈=

Biot-Savart lawfor ring loop model:

TQI =

Comparison: Electronic ring currents

I. Barth, J. Manz, L. Serrano-Andrés, Chem. Phys. 347, 263 (2008)

I. Barth, J. Manz, Y. Shigeta, K. Yagi,J. Am. Chem. Soc. 128, 7043 (2006)

Page 40: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Electronic ring currents in atomic orbitals

ionized f(m=±3) orbital of the K atom

experimentallyobserved

by means ofcircularly polarized

laser pulses

I. Barth, J. Manz, Phys. Rev. A 75, 012510 (2007)I. Barth, PhD thesis, FU Berlin (2009)

M. Wollenhaupt et al,Appl. Phys. B 95, 245 (2009)

Page 41: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Agenda

Introduction

Applications to electronic fluxes

Applications to nuclear fluxesDouble proton transfer: porphyrin (2D)

Applications to concerted electronic and nuclear fluxes

Page 42: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

From Synchronous to Sequential Double Proton Transfer:

Quantum Dynamics Simulation for the Model Porphine

A. Accardi, I. Barth, O. Kühn, J. Manz

Page 43: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

MOTIVATION

System:

• Porphyrins and metalloporphyrins, as well known as the “pigments of life”, play a decisive role in biological processes[1] , such as:

Photosynthesis (chlorins)

Oxygen transport (hemoglobin and myoglobin)

Oxygen activation (Cytochromes)

Processes:

• Double Proton Transfer is important (for example, it may cause mutation of DNA base pair)[2] .

[1] H.-H. Limbach, J.T. Hynes,J.P. Klinman, R. L. Schowen, Hydrogen-Transfer Reaction, Vol. 1, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007.

[2] M. Meuwly, A. Müller and S. Leutwyler, PCCP, 5, 2663-2672 (2003)

Page 44: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

MODEL [3]

[3] Z. Smedarchina, W. Siebrand, A. Fernandez-Ramos, J. Chem. Phys. 127, 174513 (2007)

[4] T. J. Butenhoff, R. S. Chuck, H.-H. Limbach, C. B. Moore J. Phys. Chem. 1990, 94, 7847-7851.

[5] J. Braun, M. Schlabach, B. Wehrle, M. Kocher, E. Vogel, and H.-H. Limbach, J. Am. Chem. Soc. 116, 6593 (1994)

[6] J. Braun, H.-H. Limbach, P. G. Williams, H. Moromoto, and D. E. Wemmer, J. Am. Chem. Soc. 118, 7241 (1996)

[7] T. J. Butenhoff, C. B. Moore J. Am. Chem. Soc. 1988, 110, 8336.

[8] Z. Smedarchina, M. Z. Zgierski, W. Siedbrand, and P. M. Kozlowsji, J. Chem. Phys. 109, 1014 (1998)

),(),( 2121 XXVXXTH +=

2122

22

21

HH mP

mPT +=

[ ]2120

220

22

220

214

0

0 4)()( XXxGxXxXx

UV Δ−Δ−+Δ−Δ

= eVU 473.00 = , 00 251.1 ax =Δ and 063.0=G

Two dimensional model supported in [4]: notRRKM, slow IVR.

Parameters based on:

- Experimental value U0 [5], [6], [7] → NMR, Laser-Induced Fluor.-Spect.

- Quantum chemistry for other values [8] → DFT/B3LYP/6-31G*

Page 45: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

DOUBLE PROTON TRANSFER

R SP2 P

Synchronous

Page 46: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

DOUBLE PROTON TRANSFER

R P

I1

I2

TS

TS

TS

TS

Sequential

Page 47: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

INITIAL CONDITION

Initial displacement of the wave packet[11]

[11] W. Li, X. Zhou, R. Lock, S. Patchovskii, A. Stolow, H.C. Kapteyn, M.M. Murnane, Science, 322, 1207 (2008)

Page 48: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

NUCLEAR DYNAMICS

Page 49: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

DOMAINS OF THE POTENTIAL

Time-dependent populationof domains:

≠ ≠

≠∫∫=

DomainDomain dXdXtXXtP 2121 ),,()( ρ

Page 50: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

POPULATION AND FLUX DYNAMICS

Page 51: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

CONCLUSIONS

Fluxes Analysis of mechanism

Double Proton Transfer

1) Synchronous sequential

2) in general: quantum chemistry quantum reaction dynamics

Page 52: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Agenda

Introduction

Applications to electronic fluxes

Applications to nuclear fluxes

Applications to concerted electronic and nuclear fluxes Vibration dynamics: H2

+ (3D+1D)Cope rearrangement: Semibullvalene (multi-D+1D)

Page 53: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Concerted electronic and nuclearfluxes in molecules

Vibration dynamics in H2+ Cope rearrangement in Semibullvalene (SBV)

I. Barth, H.-C. Hege, H. Ikeda, A. Kenfack, M. Koppitz, J. Manz, F. Marquardt,

G.K. Paramonov,Chem. Phys. Lett. 481, 118 (2009)

D. Andrae, I. Barth, T. Bredtmann, J. Manz, B. Paulus,

in preparation

A.D. Bandrauk, S. Chelkowski, P.B. Corkum, J. Manz, G.L. Yudin, J. Phys. B 42, 134001 (2009)M. Okuyama, K. Takatsuka, Chem. Phys. Lett. 476, 109 (2009)K. Nagashima, K. Takatsuka, J. Phys. Chem. A (2009), in press

Page 54: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Example: Vibration dynamicsin H2

+

Concerted electronic and nuclear fluxes in molecules: Vibration dynamics in H2

+

I. Barth, H.-C. Hege, H. Ikeda, A. Kenfack, M. Koppitz, J. Manz, F. Marquardt, G.K. Paramonov, Chem. Phys. Lett. 481, 118 (2009)

Initialization:W. Li, X. Zhou, R. Lock, S. Patchkovskii, A. Stolow, H.C. Kapteyn, M.M. Murnane,

Science 322 (2008) 1207.

Page 55: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Example: Vibration dynamicsin H2

+

Concerted electronic and nuclear fluxes in molecules: H2

+

I. Barth, H.-C. Hege, H. Ikeda, A. Kenfack, M. Koppitz, J. Manz, F. Marquardt, G.K. Paramonov, Chem. Phys. Lett. 481, 118 (2009)

Initialization:W. Li, X. Zhou, R. Lock, S. Patchkovskii, A. Stolow, H.C. Kapteyn, M.M. Murnane,

Science 322 (2008) 1207.

Page 56: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Concerted electronic and nuclear fluxes in molecules: SBV

Example: Cope rearrangement in Semibullvalene (SBV)

K. Bergmann, S. Görtler, J. Manz, and H. Quast, J. Am. Chem. Soc. 1993, 115, 1490-1495.

M. Dohle, J. Manz, G.K. Paramanov, H.Quast, Chem. Phys. 1995, 197, 91-97.

M. Dohle, J. Manz, G.K. Paramonov, Ber. Bunsenges. Phys. Chem. 1995, 99, 478-484.

Initialization:W. Li, X. Zhou, R. Lock, S. Patchkovskii, A. Stolow, H.C. Kapteyn, M.M. Murnane,

Science 322 (2008) 1207.

D. Andrae, I. Barth, T. Bredtmann, A. Kaushik, A. Kenfack,

J. Manz, B. Paulus

Page 57: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Example: Cope rearrangement in Semibullvalene (SBV)

K. Bergmann, S. Görtler, J. Manz, and H. Quast, J. Am. Chem. Soc. 1993, 115, 1490-1495.

M. Dohle, J. Manz, G.K. Paramanov, H.Quast, Chem. Phys. 1995, 197, 91-97.

M. Dohle, J. Manz, G.K. Paramonov, Ber. Bunsenges. Phys. Chem. 1995, 99, 478-484.

Initialization:W. Li, X. Zhou, R. Lock, S. Patchkovskii, A. Stolow, H.C. Kapteyn, M.M. Murnane,

Science 322 (2008) 1207.

Concerted electronic and nuclear fluxes in molecules: SBV

D. Andrae, I. Barth, T. Bredtmann, A. Kaushik, A. Kenfack,

J. Manz, B. Paulus

Page 58: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Concerted electronic and nuclear fluxes in molecules: Cope rearrangement in SBV

Page 59: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Conclusions and outlook

Calculation of the time-dependent electronic flux density

in large molecules

Experiments for coupled quantum effectsof electron and nuclear dynamics

Flux: analysis of reaction mechanismconcerted effects of coupled nuclei and electrons

Challenges for future

Page 60: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Thanks to…

The group at FU Berlin

international partners

DFG (project Ma 515/23-1 and Sfb 450)

GK 788 (project A1)

CSS

FCI

Page 61: Quantum Fluxes during Chemical Reactions · D.J. Tannor, Introduction to Quantum Mechanics – A Time Dependent Perspective (University Science Books: USA 2007) Product of Gaussian

Group at FU Berlin