PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N...

39
Partial Wave Analysis of Strangeness Production at GeV Energies Laura Fabbietti Robert Münzer, Shuna Lu, Technische Universität München Excellence Cluster – Origin of the Universe

Transcript of PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N...

Page 1: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

Partial  Wave  Analysis  of  Strangeness  Production  at  GeV  Energies

Laura  FabbiettiRobert  Münzer,  Shuna Lu,  Technische  Universität  München

Excellence  Cluster   – Origin  of the Universe

Page 2: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

2

Strangeness  Production

p p p

K+

Λ

• Important  Ingredient   for  Transport  Models• Understand  Production  Mechanism  to  look  for  Exotics  (ppK-­‐)

Page 3: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

3

Strangeness  Production

p N*Λ

K+

Resonance JP   Mass  (𝑮𝒆𝑽 𝒄𝟐⁄ ) Γ (  𝑴𝒆𝑽 𝒄𝟐⁄ )

N*(1650) 1 2⁄ * 1.655 0.150

N*(1710) 1 2⁄ + 1.710 0.100

N*(1720) 3 2⁄ + 1.720 0.250

N*(1875) 3 2⁄ * 1.875 0.220

N*(1880) 1 2⁄ + 1.870 0.235

N*(1895) 1 2⁄ * 2.090 0.090

N*(1900) 3 2⁄ + 1.900 0.0250

Page 4: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

4

Strangeness  Production

p ΛFinal  State  InteractionAka:  scattering length andeffective range

p N*Λ

K+

Conversion  Processes

Page 5: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

5

Strangeness  Production

p

Λ

K+

N NK

Kaonic Bound  States

Page 6: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

6

Partial  Wave  Analysis

𝐴 :  reaction  amplitude      A  ∝ 𝐴 ∝ 𝐴/01 (s)   (Transition  amplitude  of  wave  𝛼)𝑘 :  3-­‐momentum  of  the   initial  particle  in  the  CM𝑠 −  𝑃8 ∶   𝑘: + 𝑘8 8

𝑑ϕ 𝑃,𝑞:,𝑞8,𝑞@ :  invariant  three-­‐particle  phase  space  

Cross-­‐section  DecompositionA. Sarantsev et.al., Eur.Phys J A 25 2005

Parameterization  of  the  Transition

Bonn-­‐Gatchina PWA  Framework  

Constant  amplitude

Phase

Energy  dependent  amp.

𝑑𝜎 =  2𝜋 D 𝐴 8

4 𝑘 𝑠 𝑑ϕ 𝑃, 𝑞:,𝑞8, 𝑞@ ,        𝑃 = 𝑘: + 𝑘8

𝐴/01 𝑠 = 𝑎:1 + 𝑎@1 𝑠 𝑒HIJ𝑎:1

𝑎81

𝑎@1

Page 7: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

7

Kaonic  Cluster

N NK

Theoretical  Predictions

Binding Energy (BE):10-100 MeVMesonic Decay (Γm)30-110 MeVNon-Mesonic Decay (Γnm)4-30 MeV

Property Value

charge +1strangeness -1

participants ppK−, pnK0

JP 0−

Table 0.1: Overview of different predictions for the binding energy BE, mesonic- m and non-mesonic nm decaywidths of the KNN (in MeV), inspired from [Gal13, Gal10]. The symbols (♣,♡) mark different works bythe same authors.

Chiral, energy dependent

var. [DHW09, DHW08] Fad. [BO12b, BO12a] var. [BGL12] Fad. [IKS10] Fad. [RS14]

BE 17–23 26–35 16 9–16 32m 40–70 50 41 34–46 49nm 4–12 30

Non-chiral, static calculations

var. [YA02, AY02] Fad. [SGM07, SGMR07] Fad. [IS07, IS09] var. [WG09] var. [FIK+11]

BE 48 50–70 60–95 40–80 40m 61 90–110 45–80 40–85 64–86nm 12 ∼20 ∼21

Page 8: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

8

Kaonic  Cluster

Physical  Background:p +  p Λ +    p    +    K+

p +  p N*+ +    p

Λ +  K+

N*+    -­‐ Resonances J. BeringerPhys.Rev. D86 (2012)

p +  pppK-­‐ +    K+

Λ +  p

Λ(1405)  +  p +    K+

N NK

Resonance JP   Mass  (𝑮𝒆𝑽 𝒄𝟐⁄ ) Γ (  𝑴𝒆𝑽 𝒄𝟐⁄ )

N*(1650) 1 2⁄ * 1.655 0.150

N*(1710) 1 2⁄ + 1.710 0.100

N*(1720) 3 2⁄ + 1.720 0.250

N*(1875) 3 2⁄ * 1.875 0.220

N*(1880) 1 2⁄ + 1.870 0.235

N*(1895) 1 2⁄ * 2.090 0.090

N*(1900) 3 2⁄ + 1.900 0.0250

Page 9: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

9

Total  Data  Set

Hades  Data  Ebeam=3.5  GeV Had.  Wall  Data  Ebeam=3.5  GeV FOPI  Data  Ebeam=3.1  GeV

No Peak  VisibleNo Signal?R. Münzer, PhD Thesis, TUM 2014

E. Epple, PhD Thesis, TUM 2014

Page 10: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

10

Phase  Space  Simulation

Experimental  Data

pp   p  K+ Λ Phase  Space

Masses

CMS  An

gle

G.-­‐J.-­‐A

ngle

Hel.  -­‐A

ngle

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dM

[events/  25  MeV

c-­‐2]

dN/dM

[events/  36  MeV

c-­‐2]

dN/dM

[events/  21  MeV

c-­‐2]

Page 11: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

11

Four  Best  PWA  Solutions

Measured  DataPWA  solutions

Inside  HADES  acceptance

DataPWA

CMS  An

gle

G.-­‐J.-­‐A

ngle

Hel.  -­‐A

ngle

Page 12: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

12

PWA  ResultsExperimental  DataExperimental  Data

Solution   ASolution   BSolution   CSolution   DSolution   E

CMS  An

gle

G.-­‐J.-­‐A

ngle

Hel.  -­‐A

ngle

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

dN/dcosθ

[events/0.07]

Page 13: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

13

Four  Best  PWA  Solutions

DataPWA

dN/dM[events/  25  MeVc-­‐2]

dN/dM[events/  36  MeVc-­‐2]

dN/dM[events/  21  MeVc-­‐2]

FOPI

HADES

DataPWA

Page 14: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

14

ppK-­‐ Upper  Limit  DeterminationΓ =  20  MeVc-­‐²Γ =  35  MeVc-­‐²Γ =  50  MeVc-­‐²

2+0+ 1-­‐

Γ  (MeVc-­‐2) Cross  Section (μb)

20 7.6  ± 1.2  -­‐ 3.5 -­‐ 22.4  ± 3.6  -­‐ 10.7

35 6.3  ± 1.7  -­‐ 0.6 -­‐ 9.5 ± 2.6  -­‐ 0.9

50 10.2  ± 1.8  -­‐ 4.5 -­‐ 11.6  ± 3.4  -­‐ 0.6

60 11.2  ± 1.9  -­‐ 5.0 -­‐ 33.8  ± 5.2  -­‐ 16.9

80 11.4  ± 2.7  -­‐ 3.8 -­‐ 35.9  ± 5.7 -­‐ 17.4

Upper  Limit  Cross  Sectionp  +  p  -­‐>  p  +  K+  +  ΛTotal  Cross  Section  

Interpolated  from  literature

Page 15: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

15

Upper  Limit

6.3 Comparison With Other Results

Table 6.9: The extracted cross section of the acceptance corrected histograms.All given in [μb].

Histogram Sol. No. 6/9 Sol. No. 1/8 Sol. No. 3/8 Sol. No. 8/8

CMSΛ 36.88±0.36 37.79±0.37 36.41±0.35 35.95±0.35CMSp 38.27±0.47 39.41±0.53 36.43±0.47 36.3±0.44CMSK+ 38.8±0.32 39.57±0.33 37.68±0.3 36.7±0.3

GJ-Angle RF-pK 37.25±0.35 38.18±0.37 36.16±0.34 35.29±0.33GJ-Angle RF-KΛ 38.15±0.36 39.11±0.37 37.21±0.34 36.74±0.34GJ-Angle RF-pΛ 40.41±1.06 41.67±1.09 40.75±1.10 39.7±1.15H-Angle RF-pΛ 37.63±0.37 38.47±0.38 36.97±0.36 36.14±0.35H-Angle RF-pK 37.23±0.40 37.91±0.41 36.38±0.38 35.51±0.38H-Angle RF-KΛ 37.75±0.42 38.36±0.44 37.22±0.42 36.24±0.40

IM(ΛK+) 38.72±0.35 39.57±0.36 37.83±0.34 37.01±0.33IM(pK+) 38.25±0.34 39.27±0.35 37.52±0.33 36.59±0.32IM(Λp) 38.07±0.38 38.83±0.40 37.35±0.36 36.41±0.36

Average 38.12±0.43 - - -

corresponding model. The model is normalized to the experimental data in theindicated range inside the brackets. To obtain the total production cross sec-tion each histogram was integrated. The experimental data are summed insideof the indicated range. Outside of this range the extrapolated model value istaken for the integration. The resulting cross section is quoted in each his-togram. Table 6.9 summarizes the results of the integration of all the presentedhistograms of Appendix G.3. The average cross section obtained with sol. No.6/9 is written in the last row of Table 6.9. The systematic error is constructed bythe maximum deviations to this value, marked in bold. The uncertainty due tothe normalization to p+p elastic events gives an additional error of 2.67 μb. Alast error comes from the fact that the data contain a certain amount of statisticnot associated to pK+Λ production. This amount is roughly 6% as described inSection 4.1.3. The overall total production cross section, thus, reads as:

σpK+Λ = 38.12± 0.43+3.55−2.83 ± 2.67(p+p-error)−2.9(background) μb. (6.12)

6.3 Comparison With Other Results

The extracted pK+Λ cross section of this work can be compared to the crosssections at other beam energies. Figure 6.14 shows in both panels the pK+Λ

153

5 Is There a New Signal? - A Statistical Analysis

seem astonishingly high. Unlike in many analyses where the observed yieldin a "bump" is directly connected to a production yield this can not be donewhen considering interference. When two sources interfere the final yield cannot be attributed clearly to one or the other source only from observing theinterference pattern. The percentages quoted in Figures 5.8, 5.10 and 5.12are, thus, attributed to an initial yield before interference as a final yield is notclearly defined in this approach. Only in case of absent interference one couldobserve directly a signal with 5% signal strength as compared to the total pK+Λproduction cross section.

For an upper bound on the production amplitude the most conservative case ata mass point is the one that sets the limit. To summarize the results of Figures5.8, 5.10 and 5.12 the highest percentage of cross section still accepted byCLs is shown in Figure 5.13 as gray bands. One sees that the upper limit asa function of the kaonic cluster mass is rather structure-less. While a kaoniccluster produced via Wave A and B seems to allow a higher yield by still beingconsistent with the data, a production of a kaonic cluster via Wave C is strongerconstrained to about half the production strength as compared to the two othercases. The larger the width of the produced state the more yield is consistentwith the data.

Figure 5.13: The upper limit on the production of a KNN in the measured reactionat a CLs limit of 95%. The limit is quoted in percentage of total pK+Λproduction cross section. The three figures show the limit for allthree transition amplitudes. This is obtained from the HADES data-set for a simulated width of 30, 50, and 70 MeV.

128

70  MeV50  MeV30  MeV

Measured  total  cross-­‐section:

Upper  limit  of  ppK-­‐ Cross  Section:

Γ  (MeVc-­‐2) Cross  Section (μb)

0+ 1.9  – 3.9

1-­‐ 2.1  – 4.2

2+ 0.7  – 2.1

Production   Cross  Section  Λ(1405)

9.2  ± 0.9 ± 0.7    +3.3  -­‐1.0  μb

HADES coll. (G. Agakishiev et al.) Phys. Lett. B742 (2015) 242-248.

Page 16: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

Multi-­‐PWA  

Page 17: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

17 17

Data  Sets

Experiment EB  [GeV] pK+ΛStatistics

Status

COSY-­‐TOF 1.96 ~160k In  Preparation  (not  used  in  the  analysis)

DISTO 2.15 121  k Available

COSY-­‐TOF 2.16 43  k Available

COSY-­‐TOF 2.16 ~90k In  Preparation  (not  used  in  the  analysis)

DISTO 2.5 304  k Available

DISTO 2.85 424  k Available

FOPI 3.1 0.9  k Single PWA

HADES 3.5 21  k Single PWA

Page 18: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

18

COSY-­‐TOF  Spectrometer

Acceptance:  1°-­‐60° (polar),  2π (azimuthal)Sec.  Vertex:  𝜎N,O < 1𝑚𝑚, 𝜎R < 3𝑚𝑚

𝜎STU = 300𝑝𝑠𝜎WW(YZ) = 16  𝑀𝑒𝑉/𝑐8

Page 19: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

19

DISTO  Spectrometer

Acceptance:  23°-­‐43° (polar),   2π (azimuthal)𝜎Y = 5%

𝜎WW(YZ) = 30  𝑀𝑒𝑉/𝑐8

Page 20: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

20

1. Solution  for  HADES+FOPI+DISTO25  – Energy  Range  wide  enough  for  energy  dependence– High  energy  for  higher  N*-­‐Resonances– Three  datapoint to  pin  down  set– Easier  to  make  manual  changes  in  parameter  set

2. Include  Stepwise  further  data  sample1. Cosy216  /  DISTO21  /  DISTO28– Inclusion  do  not  require  further  manual  modification  of  data  

parameter  set.

Combined  Analysis

Page 21: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

21

Parameter  Scan

Solution A B C D E

Loglike -­‐67142 -­‐67018 -­‐66878 -­‐66504 -­‐66405

χ8

𝑛𝑑𝑓 (𝑛𝑑𝑓 = 4547)9,50 9,98 9,98 10,01 10,34

N*(1650) + + + + +

N*(1710) + + + + +

N*(1720) + + + + -­‐

N*(1875) + + -­‐ -­‐ +

N*(1880) + + + + +

N*(1895) + + + + +

N*(1900) -­‐ + + -­‐ +

Σ𝑁  (0+) + + + + +

Include  different  N*  Resonances  pKΛ non  resonant  up  to  F  wave  *  

Page 22: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

22

[email protected]  GeV

22

Χ2 /  ndf (ndf=428)

PWA 1.52

Page 23: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

23

COSY-­‐[email protected]  GeV

23

Χ2 /  ndf(ndf=428)

PWA 0.44

Page 24: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

24

[email protected]  GeV

24

Χ2 /  ndf (ndf=428)

PWA 2.56

Page 25: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

25

[email protected]  GeV

25

Χ2 /  ndf (ndf=428)

PWA 3.55

No  Kaonic Cluster  included  

Page 26: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

26

FOPI

26

Χ2 /  ndf (ndf=428)

PWA 0.91

Page 27: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

27

HADES

27

Χ2 /  ndf (ndf=428)

PWA 2.14

Page 28: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

28

HADES  -­‐ WALL

28

Χ2 /  ndf (ndf=428)

PWA 1.86

Page 29: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

29

Total  Cross  Section

Value:𝐶: = 4.03   ± 0.57  108𝐶8 = 1.49   ± 0.04𝐶@ = 1.43   ± 0.39

𝜎YZl =  𝐶: 1 −𝑠m

𝑠m + 𝜖8

oI 𝑠m𝑠m + 𝜖

8

op

R.Muenzer et al.,Hyperfine 233, 159-166 (2016)

Page 30: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

30

Branching Ratio

4.3 A Partial Wave Analysis for p+K++Λ Production

where S is the total spin of the p+p system, L is the orbital momentum betweenthe two protons and J is the total angular momentum.

The final state is manifold. As explained in Section 2.4, the final pK+Λ statemay contain several intermediate particles. The most prominent ones are N∗+

resonances that subsequently decay into K+ and Λ, see Reaction (2.6). The PDG[8] contains a list of N*-resonances but not all of them are well established.Within this thesis no conclusion can be drawn about the precise contributionof the different N∗+-resonances to the investigated final state and hence nocross section of the latter will be extracted. Thus, all N*-resonances belowthe mass of 2100 MeV/c2 that have a measured K+Λ branching above 1% wereconsidered as possible contribution to the K+Λ yield. Table 4.1 lists the selectedN*-resonances, their quantum numbers, masses, widths and branching ratiosinto K+Λ. Especially the branching in K+Λ is not well known in most of thecases.

Table 4.1: Selected N*-resonances with their properties [8].

Notation in PDG Old notation Mass [GeV/c2] Width [GeV/c2] ΛK/A %

N(1650) 12

−N(1650)S11 1.655 0.150 3-11

N(1710) 12

+N(1710)P11 1.710 0.200 5-25

N(1720) 32

+N(1720)D13 1.720 0.250 1-15

N(1875) 32

−N(1875)D13 1.875 0.220 4±2

N(1880) 12

+N(1880)P11 1.870 0.235 2±1

N(1895) 12

−N(1895)S11 1.895 0.090 18±5

N(1900) 32

+N(1900)P13 1.900 0.250 0-10

Using this table, one can construct several allowed transitions from a p+p initialto a N∗++p final state. As an example, one transition will be discussed here.A proton has the following quantum numbers JP = 1/2+, where J is the totalspin of the particle and P is its parity. A system of two protons can, therefore,have a total spin S = 0 or S = 1. If one considers the S = 0 combination andassumes no orbital momentum between the two particles (L = 0), the quantumnumbers of the system are JP = 0+. This state can also be characterized inthe spectroscopic notation (Equation (4.18)). Then, in this example, the p + pcombination is in the state 1S0.

If one considers, further, a final state of an N∗(1650) with the quantum num-bers JP = 1/2− produced together with a proton, one has to build all possible

97

Page 31: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

31

Cross  Section

Non  Resonant-­‐Resonant:  20-­‐80

Page 32: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

32

Initial  State

Page 33: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

33

Final  State  Interaction  in  PWA

33

[15]  Haidenbauer et  al.Nuclear  Physics  A,915,24-­‐58   (2013)[16]  G.  Alexander  et  a.,  Phys.  Rev.  173,1452   (1968).[17]  M.Roeder et  al.,  Eur.  Phys.  J.  A49,  157  (2013)[18]  Hauenstein 2014

Scattering  Length

Effective  Range  of  System𝐴8qr =   st

:+uI0vwIHxy

v +zwHxyv wI{ U w,0v,|}

𝑎Ylr

𝑟r

𝛼s = −1.43   ± 0.36   ± 0,09  𝑓𝑚            𝛼/ = −1,88 ± 0,38 ± 0.10𝑓𝑚𝑟s = 1.31   ± 0.24   ± 0,16  𝑓𝑚            𝑟/ = 1.04 ± 0.78 ± 0.15𝑓𝑚

Source 1S 0 a⇤�p

[fm] 1S 0 r⇤�p

[fm] 3S 1 a⇤�p

[fm] 3S 1 r⇤�p

[fm] < a⇤�p

> [fm]This work �1.43 ± 0.36 ± 0.09 1.31 ± 0.24 ± 0.16 1.88 ± 0.38 ± 0.10 1.04 ± 0.78 ± 0.15NLO2 [15] -2.91 2.78 -1.54 2.72 -1.883

LO2 [15] -1.91 1.40 -1.23 2.13 -1.43

[16] �1.8+2.3�4.2 - �1.6+1.1

�0.8 - -[17] - - - - �1.25 ± 0.08 ± 0.03[18] - - �1.310.32

�0.49 ± 0.3 ± 0.16 - �1.233 ± 0.014 ± 0.3 ± 0.12

Table 3: Scattering length and e↵ective range extracted from the combined PWA fit and reference values from theoretical calculation and previous measurement(see text for details).

[6] L. Fabbietti, Strange Baryonic Res-onances and Resonances Coupling to Strange Hadrons at SIS Energies, in11th Conference on Quark Confinement and the Hadron Spectrum (Confinement XI) St. Petersburg, Russia, September 8-12, 2014,2015.

[7] G. Agakishiev et al., Phys. Rev. C84, 014902 (2011).[8] G. Agakishiev et al., Eur. Phys. J. A50, 82 (2014).[9] J. Weil and U. Mosel, EPJ Web Conf. 52, 06007 (2013).

[10] G. Agakishiev et al., Phys. Lett. B742, 242 (2015).[11] G. Agakishiev et al.[12] B. Sechi-Zorn, B. Kehoe, J. Twitty, and R. A. Burnstein, Phys. Rev. 175,

1735 (1968).[13] F. Eisele, H. Filthuth, W. Foehlisch, V. Hepp, and G. Zech, Phys. Lett.

B37, 204 (1971).[14] G. Alexander et al., Phys. Rev. 173, 1452 (1968).[15] J. Haidenbauer et al., Nucl. Phys. A915, 24 (2013).[16] G. Alexander et al., Phys. Rev. 173, 1452 (1968).[17] M. Rder et al., Eur. Phys. J. A49, 157 (2013).[18] F. Hauenstein, Proton-Lambda Final State Interaction and Polarization

Observables Measured in the pp pKLamda Reaction at 2.7GeV/c BeamMomentum, PhD thesis, 2014.

[19] M. Maggiora et al., Nucl.Phys. A835, 43 (2010).[20] M. Maggiora, Nucl.Phys. A691, 329 (2001).[21] M.Roeder, Final state interactions and polarization observables in the

reaction pp!pK+⇤ close to threshold, Dissertation, Ruhr UniversitatBochum, 2011.

[22] F. Balestra et al., Phys.Rev.Lett. 83, 1534 (1999).[23] R. Munzer, Search for the kaonic bound state ppK

� - Exclusive analysisof the reaction p+p! pK+⇤ at the FOPI experiment at GSI,Dissertation, TU Munchen, 2014.

[24] E. Epple, Measurable consequences of an attractive KN interaction.,Dissertation, TU Munchen, 2014.

[25] A. Anisovich and A. Sarantsev, Eur.Phys.J. A30, 427 (2006).[26] K. Ermakov et al., Eur.Phys.J. A47 (2011).[27] A. Sarantsev, private Communication, 2013.[28] K. A. Olive et al., Chin. Phys. C38, 090001 (2014).[29] K. Brinkmann, V. Nikonov, A. Sarantsev, and M. Schulte-Wissermann,

The analysis of the pp!pK+⇤ data at beam momenta 2950,3059 and3200 MeV, Draft from 2013, 2013.

[30] S. Abd El-Samad et al., Eur.Phys.J. A49, 41 (2013).[31] S. Wycech, private communication, 2014.[32] E. R. E. Roderburg, J. Ritman, private communication, 2014.[33] S. Abdel-Samad et al., Phys.Lett. B632, 27 (2006).[34] S. Abd El-Samad et al., Phys.Lett. B688, 142 (2010).[35] M. Abdel-Bary et al., Eur.Phys.J. A46, 27 (2010).[36] S. Abd El-Samad et al., Eur.Phys.J. A49, 41 (2013).[37] K. Fuchs and H. So↵el, Geophysics, in Landolt-Bornstein, New Series,

volume V/2, page 417(a) and 468(b), Springer-Verlag, Heidelberg, 1985.[38] A. Sibirtsev, W. Cassing, G. Lykasov, and M. Rzyanin, Nucl.Phys.

A632, 131 (1998).[39] R. Muenzer et al., Hyperfine Interaction 233, 159 (2016).

[MeV]Λ,+p,K

- Ms100 200 300 400 500 600 700 800 900

b)

µ(σ

0123456789

(x2)0

S1

0P3

(a)

[MeV]Λx,P+p,K

- Ms100 200 300 400 500 600 700 800 900

b)

µ(σ

0

5

10

1520

25

3035

40

45

(x3)2D1

1P3

2P3

(b)

[MeV]Λ,+p,K

- Ms100 200 300 400 500 600 700 800 900

b)

µ(σ

0

2

4

6

8

10

12

14

16

2F

3

(c)

Figure 4:

7

Page 34: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

34

The  ΣN  Cusp  Effect

34

At  Threshold   :    2130  MeVc-­‐2

Quantum  Number  of  Cusp:    0+ /  1+ (L=0,2)

Spectral  Function:  Breit Wigner

Flatté

S.Abd El-­‐Samad,  Eur.Phys.J A49(2013)

Coupled  Channel:

Page 35: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

35

Previous  Observations

Page 36: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

36

Cusp  Spectral  Function

Page 37: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

37

Data  Set

Page 38: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

38

Results

Page 39: PWA talk short - yukawa.kyoto-u.ac.jptetsuo.hyodo/ExHIC2016/Fabbietti2.pdf · 7 Kaonic’Cluster N N K Theoretical’Predictions Binding Energy (BE): 10-100 MeV MesonicDecay (Γ m)

39

• Combined  Analysis  for  COSY  &  DISTO  &  HADES  &  FOPI  completed

• Systematical  Analysis  performed  • Excitation  Function  for  N*  and  pKL extracted• Scattering  Length  p-­‐Λ separate  for  Singlet  and  Triplet• Cusp  Wave  included  too  (  not  discussed  here)• Common  upper  limit  for  Kaonic Bound  states  to  come  soon

Summary  and  Outlook