Prova finale presentazione

41
Fluid machines year project 2013-14 presentation Desing of an horizontal axis wind turbine Luca Bazzucchi Filippo Campolmi Florian Zatti

Transcript of Prova finale presentazione

Page 1: Prova finale presentazione

Fluid machines year project 2013-14 presentation

Desing of an horizontal axis wind turbine

Luca Bazzucchi

Filippo Campolmi

Florian Zatti

Page 2: Prova finale presentazione

Nome relatore

Desing of an horizontal axis wind turbine

Page 3: Prova finale presentazione

Nome relatore

Operating conditions:

•V0 = 12 m/s (uniform);

• T0 = 15 °C;

• z = 1300 m; P = 0.87 bar ρ = 1.05 kg/m^3

Page 4: Prova finale presentazione

Nome relatore

Design mechanical power at the turbine shaft

Target power = 80 kW we decided to use a three blades rotor

λ=7;

cp=0.49;

Page 5: Prova finale presentazione

Nome relatore

For a=1/3 we have the maximum value of

the trend

a coefficient trend

Page 6: Prova finale presentazione

Nome relatore

First attempt

cp =

Section: S = 179.9662 m^2

Diameter: D = 15.1374 m

Page 7: Prova finale presentazione

Nome relatore

v1=8;

r_est = 7.5687 m;

r_int = 0.2* r_est = 1.5137 m;

h ( =“blade height” ) = 6.0549 m;

ω ( =“angular speed” ) = 11.0984 rad/s

we divide the blade into 20 parts:

u = ω*r

W_m=v1; W_t=-u W1= sqrt(W_m^2 + W_t^2)

β = atan ( W_t / W_m)

Page 8: Prova finale presentazione

Nome relatore

u w β

16.8000

20.3368

23.8737

27.4105

30.9474

34.4842

38.0211

41.5579

45.0947

48.6316

52.1684

55.7053

59.2421

62.7789

66.3158

69.8526

73.3895

76.9263

80.4632

84.0000

18.6075

21.8538

25.1784

28.5541

31.9647

35.4000

38.8536

42.3209

45.7989

49.2852

52.7783

56.2768

59.7798

63.2866

66.7966

70.3092

73.8242

77.3412

80.8599

84.3801

-64.5367

-68.5266

-71.4742

-73.7297

-75.5061

-76.9390

-78.1177

-79.1037

-79.9401

-80.6584

-81.2816

-81.8275

-82.3094

-82.7379

-83.1214

-83.4666

-83.7789

-84.0628

-84.3221

-84.5597

Velocity triangles

Page 9: Prova finale presentazione

Nome relatore

Velocity triangles

Page 10: Prova finale presentazione

Nome relatore

Velocity triangles

Page 11: Prova finale presentazione

Nome relatore

Velocity triangles

Page 12: Prova finale presentazione

Nome relatore

Page 13: Prova finale presentazione

Nome relatore

Selection of the profiles (NREL)

• Root (40%) S808

• Primary (75%) S805A

• Tip (95%) S806A

Page 14: Prova finale presentazione

Nome relatore

ROOT

Page 15: Prova finale presentazione

Nome relatore

MID

Page 16: Prova finale presentazione

Nome relatore

TIP

Page 17: Prova finale presentazione

Nome relatore

Example of convergence analisys for the

calculation of the chord at the root section

At the beginnig, we suppose a Reynold number of 1.5e6.

We want the angle of attack that maximize the ratio between cl

and cd

Page 18: Prova finale presentazione

Nome relatore

Angle of attack Cl Cd

2 0.625 0.0099

3 0.73 0.0104

4 0.835 0.011

5 0.938 0.0116

6 1.041 0.0124

7 1.142 0.0133

8 1.24 0.0144

9 1.336 0.0156

10 1.427 0.0172

11 1.51 0.0189

Page 19: Prova finale presentazione

Nome relatore

Chord

new_Re = = 1.1525e6

Page 20: Prova finale presentazione

Nome relatore

Linear interpolation in order to get

the values of cl and cd as function of

Re

Page 21: Prova finale presentazione

Nome relatore

New values of cl and cd:

cl = 1.236

chord Re = 1.1560e6 convergence!

cd = 0.0152

Page 22: Prova finale presentazione

Nome relatore

Linear interplation in order to get the values of

cl and cd along the blade height

Page 23: Prova finale presentazione

Nome relatore

Chord

0.9131

0.7984

0.7118

0.6450

0.5925

0.5505

0.5165

0.4886

0.4657

0.4468

0.4312

0.4183

0.4079

0.3996

0.3932

0.3860

0.3804

0.3762

0.3732

0.3715

Page 24: Prova finale presentazione

Nome relatore

Angle of attack

Approximation: we suppose that the angles of attack constant are constant for each profile

Root Primary Tip

Angle of attack 8 6 5

Page 25: Prova finale presentazione

Nome relatore

γ= β- α Stagger angle

-72.5367

-76.5266

-79.4742

-81.7297

-83.5061

-84.9390

-84.1177

-85.1037

-85.9401

-86.6584

-87.2816

-87.8275

-88.3094

-88.7379

-89.1214

-88.4666

-88.7789

-89.0628

-89.3221

-89.5597

Page 26: Prova finale presentazione

Nome relatore

Power

91989 kW

Page 27: Prova finale presentazione

Nome relatore

Since the power calculated is bigger than the design

mechanical power, we reduce the diameter

Old

D= 15.1374 m

New

D = 14.2730 m

The Re numbers calculated in the previous

case at root, primary and tip section are

very simlilar to the new ones

We will use the same values of cl and cd

previously calculated

Page 28: Prova finale presentazione

Nome relatore

New values

r_est = 7.1365 m;

r_int = 1.4273 m;

h = 5.7092 m;

ω = 11.7705 rad/s

β, u , w don’t change!

Page 29: Prova finale presentazione

Nome relatore

New chord

0.8609

0.7528

0.6712

0.6082

0.5587

0.5191

0.4870

0.4607

0.4391

0.4213

0.4066

0.3945

0.3846

0.3768

0.3707

0.3640

0.3587

0.3547

0.3519

0.3502

Page 30: Prova finale presentazione

Nome relatore

New power

81783 kW

cp

0.5634

Page 31: Prova finale presentazione

Nome relatore

Off desing conditions: V0=10 m/s

a = f ( r, cl, cd, β, V1) but cl, cd, β, V1 depend on a

iterations

is the mean value

Page 32: Prova finale presentazione

Nome relatore

Example of iteration at the root section

We start from

Using the new value of a, we can restart the iteration

The angle of attack changes!

Page 33: Prova finale presentazione

Nome relatore

Linear interplation in order to get the

values of cl and cd with respect to the

angle of attack

Page 34: Prova finale presentazione

Nome relatore

Power

V0=10 m/s

4.4247e+04 kW

Cp = 0.5268

V0=14 m/s

1.2049e+05;

Cp = 0.5227

Page 35: Prova finale presentazione

Nome relatore

Velocity triangles V0 = 10 m/s

Page 36: Prova finale presentazione

Nome relatore

Velocity triangles V0 = 10 m/s

Page 37: Prova finale presentazione

Nome relatore

Velocity triangles V0 = 10 m/s

Page 38: Prova finale presentazione

Nome relatore

Velocity triangles V0 = 14 m/s

Page 39: Prova finale presentazione

Nome relatore

Velocity triangles V0 = 14 m/s

Page 40: Prova finale presentazione

Nome relatore

Velocity triangles V0 = 14 m/s

Page 41: Prova finale presentazione

Nome relatore

Mechanical Vibrations year project

THE END

Thank you for the attention