Prof. Jin's Laboratory - Fuel Processing Technology · 2017. 1. 1. · A high oxygen permeation...

8
Highly oxygen-permeable and CO 2 -stable Ce 0.8 Sm 0.2 O 2 δ -SrCo 0.9 Nb 0.1 O 3 δ dual-phase membrane for oxygen separation Shaobin Guo, Zhengkun Liu, Jiawei Zhu, Xin Jiang, Zhe Song, Wanqin Jin State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China abstract article info Article history: Received 28 February 2016 Received in revised form 1 July 2016 Accepted 7 July 2016 Available online xxxx Dual-phase composite oxide 60 wt% Ce 0.8 Sm 0.2 O 2 δ -40 wt% SrCo 0.9 Nb 0.1 O 3 δ (60SDC-40SCN) which exhibits high oxygen permeability and good CO 2 tolerance was developed. X-ray diffraction (XRD) patterns and dense surface topography observed by scanning electron microscopy (SEM) revealed a good compatibility of the two oxides. A high oxygen permeation ux of 1.54 mL min 1 cm 2 through the as-prepared dual-phase membrane (0.8 mm in thickness) was obtained under the gradient of air/He at 1223 K. In situ high-temperature X-ray dif- fraction demonstrated that SDC and SCN in 60SDC-40SCN membrane could retain their original phase structure from room temperature to 1223 K in CO 2 -containing atmosphere. The oxygen permeation uxes of 60SDC- 40SCN membrane showed a good reversibility when switching the sweep gas between CO 2 and He. Comparing with single-phase SCN membrane, oxygen permeation ux of dual-phase 60SDC-40SCN membrane was more than twice when pure CO 2 acted as the sweep gas, and the oxygen permeation ux could remain stable for 120 h. All the experimental results imply that dual-phase 60SDC-40SCN membrane has a great potential in oxy-fuel combustion process. © 2016 Elsevier B.V. All rights reserved. Keywords: Oxygen separation Ceramic membrane Oxy-fuel CO 2 -tolerance 1. Introduction With greenhouse gases build-up in the atmosphere, global warming has become a public concern. Among all the sources of greenhouse gases emission, combustion of fossil fuel or coal in power plants is a pri- mary polluter of carbon dioxide which needs to be addressed urgently. As one of the most promising CO 2 capture technologies, oxy-fuel pro- cess has been carried out to promote and optimize the combustion of fossil fuel and coal [13]. A typical oxy-fuel combustion process uses pure oxygen instead of air for fuel combustion, resulting in a concentrat- ed CO 2 gas stream for the subsequently high-efciency CO 2 capture to realize emission reduction of greenhouse gases [4,5]. Nevertheless, oxy- gen supply come from conventional air separation technologies on the basis of cryogenic distillation and pressure swing adsorption require large scale energetic and economic costs. Alternatively, mixed ionic electronic conducting (MIEC) oxygen permeation membrane process, which can be integrated with the combustion process providing pure oxygen in a lower implementation costs, may have great potential for oxygen separation [6,7]. Furthermore, because MIEC oxygen perme- ation membranes allow 100% oxygen selectivity [8], the emissions of NO x can also be reduced [9] and carbon capture and sequestration pro- cess can be implemented during combustion [10]. Over the past few decades, a large amount of research activities have been focused on MIEC oxides development, and a series of state-of-the- art materials with good oxygen permeation performance were devel- oped [11]. Among them, Co-containing perovskite-type oxides, such as Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3 δ (BSCF) [12], SrCo 0.8 Fe 0.2 O 3 δ [13] , which exhib- it very high oxygen permeability, were considered as the most promising membrane materials for industrialization. Unfortunately, their poor sta- bility in CO 2 or SO 2 atmosphere limits their practical applications in oxy- gen permeation membranes. This attributes to the alkaline earth metal elements (such as Ba 2+ and Sr 2+ which have large ionic radii) on A site show susceptible to the acidic gas and easily occur reactions forming carbonates and sulfates [14,15]. In addition, the variation in the valence of cobalt makes it behave imperfectly in terms of structure stability [16,17]. Alternatively, dual-phase composite oxides which allow ions and elec- trons transport in different phases show superiority in stable oxygen per- meability under CO 2 atmosphere [18], such as NiFe 2 O 4 -Ce 0.8 Tb 0.2 O 2 δ [9], Nd 0.6 Sr 0.4 FeO 3 δ -Ce 0.9 Nd 0.1 O 2 δ [19], Ce 0.9 Gd 0.1 O 2 δ -NiFe 2 O 4 [20], Ce 0.8 Gd 0.2 O 2 δ -La 0.7 Sr 0.3 MnO 3 δ [21], Ce 0.8 Sm 0.2 O 3-δ - La 0.8 Sr 0.2 CrO 3 δ [22] and Zr 0.84 Y 0.16 O 1.92 -La 0.8 Sr 0.2 Cr 0.5 Fe 0.5 O 3 δ [23]. Fuel Processing Technology 154 (2016) 1926 Corresponding author at: State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China. E-mail address: [email protected] (W. Jin). http://dx.doi.org/10.1016/j.fuproc.2016.07.009 0378-3820/© 2016 Elsevier B.V. All rights reserved. Contents lists available at ScienceDirect Fuel Processing Technology journal homepage: www.elsevier.com/locate/fuproc

Transcript of Prof. Jin's Laboratory - Fuel Processing Technology · 2017. 1. 1. · A high oxygen permeation...

  • Fuel Processing Technology 154 (2016) 19–26

    Contents lists available at ScienceDirect

    Fuel Processing Technology

    j ourna l homepage: www.e lsev ie r .com/ locate / fuproc

    Highly oxygen-permeable and CO2-stableCe0.8Sm0.2O2 − δ-SrCo0.9Nb0.1O3 − δ dual-phase membrane foroxygen separation

    Shaobin Guo, Zhengkun Liu, Jiawei Zhu, Xin Jiang, Zhe Song, Wanqin Jin ⁎State Key Laboratory ofMaterials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for AdvancedMaterials, College of Chemical Engineering, Nanjing Tech University,5 Xinmofan Road, Nanjing 210009, PR China

    ⁎ Corresponding author at: State Key Laboratory ofEngineering, Nanjing Tech University, 5 Xinmofan Road, N

    E-mail address: [email protected] (W. Jin).

    http://dx.doi.org/10.1016/j.fuproc.2016.07.0090378-3820/© 2016 Elsevier B.V. All rights reserved.

    a b s t r a c t

    a r t i c l e i n f o

    Article history:Received 28 February 2016Received in revised form 1 July 2016Accepted 7 July 2016Available online xxxx

    Dual-phase composite oxide 60 wt% Ce0.8Sm0.2O2 − δ-40 wt% SrCo0.9Nb0.1O3 − δ (60SDC-40SCN) which exhibitshigh oxygen permeability and good CO2 tolerance was developed. X-ray diffraction (XRD) patterns and densesurface topography observed by scanning electron microscopy (SEM) revealed a good compatibility of the twooxides. A high oxygen permeation flux of 1.54 mL min−1 cm−2 through the as-prepared dual-phase membrane(0.8 mm in thickness) was obtained under the gradient of air/He at 1223 K. In situ high-temperature X-ray dif-fraction demonstrated that SDC and SCN in 60SDC-40SCN membrane could retain their original phase structurefrom room temperature to 1223 K in CO2-containing atmosphere. The oxygen permeation fluxes of 60SDC-40SCN membrane showed a good reversibility when switching the sweep gas between CO2 and He. Comparingwith single-phase SCN membrane, oxygen permeation flux of dual-phase 60SDC-40SCN membrane was morethan twice when pure CO2 acted as the sweep gas, and the oxygen permeation flux could remain stable for120 h. All the experimental results imply that dual-phase 60SDC-40SCN membrane has a great potential inoxy-fuel combustion process.

    © 2016 Elsevier B.V. All rights reserved.

    Keywords:Oxygen separationCeramic membraneOxy-fuelCO2-tolerance

    1. Introduction

    With greenhouse gases build-up in the atmosphere, global warminghas become a public concern. Among all the sources of greenhousegases emission, combustion of fossil fuel or coal in power plants is a pri-mary polluter of carbon dioxide which needs to be addressed urgently.As one of the most promising CO2 capture technologies, oxy-fuel pro-cess has been carried out to promote and optimize the combustion offossil fuel and coal [1–3]. A typical oxy-fuel combustion process usespure oxygen instead of air for fuel combustion, resulting in a concentrat-ed CO2 gas stream for the subsequently high-efficiency CO2 capture torealize emission reduction of greenhouse gases [4,5]. Nevertheless, oxy-gen supply come from conventional air separation technologies on thebasis of cryogenic distillation and pressure swing adsorption requirelarge scale energetic and economic costs. Alternatively, mixed ionicelectronic conducting (MIEC) oxygen permeation membrane process,which can be integrated with the combustion process providing pureoxygen in a lower implementation costs, may have great potential

    Materials-Oriented Chemicalanjing 210009, PR China.

    for oxygen separation [6,7]. Furthermore, becauseMIEC oxygen perme-ation membranes allow 100% oxygen selectivity [8], the emissions ofNOx can also be reduced [9] and carbon capture and sequestration pro-cess can be implemented during combustion [10].

    Over the past few decades, a large amount of research activities havebeen focused on MIEC oxides development, and a series of state-of-the-art materials with good oxygen permeation performance were devel-oped [11]. Among them, Co-containing perovskite-type oxides, such asBa0.5Sr0.5Co0.8Fe0.2O3− δ (BSCF) [12], SrCo0.8Fe0.2O3− δ [13], which exhib-it very high oxygen permeability, were considered as themost promisingmembrane materials for industrialization. Unfortunately, their poor sta-bility in CO2 or SO2 atmosphere limits their practical applications in oxy-gen permeation membranes. This attributes to the alkaline earth metalelements (such as Ba2+ and Sr2+ which have large ionic radii) on Asite show susceptible to the acidic gas and easily occur reactions formingcarbonates and sulfates [14,15]. In addition, the variation in the valence ofcobalt makes it behave imperfectly in terms of structure stability [16,17].Alternatively, dual-phase composite oxides which allow ions and elec-trons transport in different phases show superiority in stable oxygen per-meability under CO2 atmosphere [18], such as NiFe2O4-Ce0.8Tb0.2O2 − δ[9], Nd0.6Sr0.4FeO3 − δ-Ce0.9Nd0.1O2 − δ [19], Ce0.9Gd0.1O2 − δ-NiFe2O4[20], Ce0.8Gd0.2O2 − δ-La0.7Sr0.3MnO3 − δ [21], Ce0.8Sm0.2O3-δ-La0.8Sr0.2CrO3 − δ [22] and Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3 − δ [23].

    http://crossmark.crossref.org/dialog/?doi=10.1016/j.fuproc.2016.07.009&domain=pdfhttp://dx.doi.org/10.1016/j.fuproc.2016.07.009mailto:[email protected] logohttp://dx.doi.org/10.1016/j.fuproc.2016.07.009http://www.sciencedirect.com/science/journal/03783820www.elsevier.com/locate/fuproc

  • Fig. 1. XRD patterns of the SCN, SDC and SDC-SCN membranes. 50SDC-50SCN, 60SDC-40SCN and 75SDC-25SCN denote 50 wt% Ce0.8Sm0.2O3 − δ-50 wt% SrCo0.9Nb0.1O3 − δ,60 wt% Ce0.8Sm0.2O3 − δ-40 wt% SrCo0.9Nb0.1O3 − δ and 75 wt% Ce0.8Sm0.2O3 − δ–25 wt%SrCo0.9Nb0.1O3 − δ respectively.

    20 S. Guo et al. / Fuel Processing Technology 154 (2016) 19–26

    However, on account of the inefficient electronic and oxygen ions trans-port [7,24], the poor oxygen permeability of most dual-phase mem-branes cannot meet the industrial requirements.

    Because single-phase mixed conducting oxides with highly oxygen-permeable, such as Co-containing oxides, still play an irreplaceable rolein future practical application, how to improve stability of these mate-rials is an important issue demanding prompt solution. According tothe design strategy of dual-phase oxygen permeation membranementioned above, we report a method that doping fluorite-type oxidesinto the Co-containing composites to achieve highly oxygen permeableand CO2 stable dual-phase membrane materials. Here we selectCe0.8Sm0.2O2 − δ (SDC) which has fast oxygen ions conductivity andgood performance in chemical durability as oxygen ion transport mate-rials. And perovskite oxide SrCo0.9Nb0.1O3 − δ which has good structurestability [13] and high oxygen permeability [25] act as the oxygen ionand electronic conductors. In this work, phase structures and surfacemorphology of the as-prepared dual-phase membranes were analyzedby X-ray diffraction (XRD) and scanning electronmicroscopy (SEM) re-spectively. To test the oxygen permeability of the dual-phase mem-branes, the oxygen permeation fluxes as functions of SDC/SCN massratios and membrane thickness were investigated. In order to examinethe CO2 tolerance of the dual-phase membrane, the oxygen permeabil-ity, the phase structure change and chemical stability were investigatedsystematically under different CO2 atmospheres.

    2. Experiment

    2.1. Preparation of SDC and SCN powders

    The powder of SDC was synthesized via a combined EDTA-citratecomplexing sol-gelmethod [26]. Briefly, the required amounts of analyt-ic grades metal nitrates of Sm (NO3)3 and Ce (NO3)3 were dissolved inaqueous solution, followed by the addition of EDTA, the molar ratio ofcitric acid:EDTA:total metal ions was 1.5:1:1. The pH value of the solu-tion was adjusted in the range of 6–8 by the addition of ammonium hy-droxide. Under the condition of 363 K heating and stirring, the gel wasobtained with the evaporating water. The gel was pre-fired in the airat 523 K to remove organic compounds and further calcined at 1073 Kfor 5 h under air atmosphere to obtain desired structural composition.

    SrCo0.9Nb0.1O3 − δ powder was fabricated by the conventional solid-state reaction techniques. The required stoichiometric amounts ofSrCO3, Co2O3 and Nb2O5 were mixed in the ethanol solution and thenball milled for 24 h. After the solvent evaporated, the mixed oxideswere calcined in muffle furnace at 1223 K for 5 h with heating andcooling rates of 5 K min−1. The sintered SCN powder was grinded andsieved (300 meshes) to prepare the dual-phase composite oxides andmembranes.

    The dual-phase composite oxides 50 wt% SDC-50 wt% SCN, 60 wt%SDC-40 wt% SCN, 75 wt% SDC-25 wt% SCN were mixed in a agate jarand ball milled for 10 h to prepare homogeneous dual-phase compositeoxides.

    2.2. Membrane preparation and characterization

    The dual-phase composites were pressed into disks under a pressureof ~200MPa. The greendiskswere sintered at 1373K for 10 h. The crystalphase structures of the SCN, SDC and different compositions of dual-phase membranes were characterized by X-ray diffraction (XRD, Bruker,model D8 Advance) with Cu Kα radiation. The variation of crystal struc-tures with temperature were characterized by in situ XRD equippedwitha high temperature attachment (in situ HTXRD, Philips, X'Pert Pro). Thesamples were tested in air and 50 vol% N2/50 vol% CO2 atmospherefrom 298 K to 1273 Kwith a heating rate of 5 Kmin−1 and each temper-ature pointwas held for 30min for thermal equilibriumbefore diffractiondata collection. All of the diffraction patternswere collected by step scan-ning at an increment of 0.05° in the range 20° ≤ 2 θ ≤ 80°. Themorphology

    and micro-structure of the single and dual-phase membranes were ex-amined by environmental scanning electron microscopy (SEM, HitachiS-4800, Japan). A gas-tight test was conducted on the sintered asymmet-ric membrane using nitrogen at room temperature.

    2.3. Oxygen permeation flux measurement

    Oxygen permeation fluxes through the single-phase and dual-phasemembranes weremeasured by a high-temperature oxygen permeationdevice which can be seen in our previous work [27]. A disk membranewith effective diameter of 7.5 mmwas sealed on the end of an aluminatubes with silver adhesives. Temperatures of the oxygen permeationmeasurement device were monitored by a programmable temperaturecontroller (AI-708PA, Yudian, China). Flow rates of the feed and sweepgas were controlled by mass flow controllers (D07-19B, Sevenstar,China). The gaseous mixture were analyzed by an On-Line gas chro-matograph (GC-8A, Shimadzu, Japan), which equipped with a 2 m 5 Amolecular sieve with helium (He) as the carrier gas. The leakage of theoxygen due to the defective sealing at high temperatures was b5% ofthe total oxygen permeation flux during all the experiments. The com-putational methods of oxygen permeation flux have also illustrated inour previous works [28].

    3. Results and discussion

    3.1. Phase and microstructure

    The XRD patterns of dual-phase membranes sintered at 1373 K for5 h are shown in the Fig. 1. As references, single-phase SDC and SCNare also included. For SDCpattern, the diffraction peaks at the respective2-theta angles of 28.42° (111), 32.96° (200), 47.28° (220), 56.12° (311),58.86° (222) and 76.42° (331) matches the fluorite structure. And forSCN, the 2-theta angles of 32.72° (110), 40.5° (111), 47.06° (200),58.42° (211), 68.44° (220) 77.86° (310) corresponding to the perovskitestructure. No additional phase resulting from undesirable reaction canbe found from the diffraction peaks of the 60SDC-40SCN dual-phase atthe room temperature, suggesting that the sintered membrane consistsof only SDC and SCN phases. The patterns of the 50SDC-50SCN and75SDC-25SCN are also depicted, same as the 60SDC-40SCN, no signifi-cant formation of impure phases can be found, revealing the stable co-existence of SDC and SCN in dual-phase membrane.

  • Fig. 2. SEMmicrographs of single-phase and dual-phase membranes surface. (a) Single-phase SCN membrane, (b) 50SDC–50SCNmembrane, (c) 60SDC–40SCN membrane, (d) 75SDC–25SCN membrane.

    Fig. 3. Effects of the temperature on the oxygen permeation fluxes of SCN and three dual-phase membranes. Conditions: FAir = 120 mL min−1, FHe = 60 mL min−1, membranethickness = 0.8 mm.

    21S. Guo et al. / Fuel Processing Technology 154 (2016) 19–26

    Fig. 2 presents the SEM micrographs of the single-phase SCN anddual-phase SDC-SCN membranes sintered at 1373 K for 5 h made bythe powder mixed method. The SCN membrane (Fig. 2a) presentsdense and crack-free surface structure, and the size of the polyhedral in-dependent particles are in the range of 3–4 μm. Fig. 2b shows the surfacetopography of the 50SDC-50SCN membrane. As shown, particles withsize in the range of 300 nm–1 μm are represent for fluorite SDC (light-colored grains), and perovskite SCN (dark-colored grains) mostlyscattered in the range of 500 nm–1 μm. The crack-free surface structureand clear grain-boundaries suggest a good chemical compatibility of thetwo oxides. It is worth noting that the particle size of SCN in dual-phasemembrane is smaller than that in the SCN membrane, which attributesto the constraint effect of the SDC oxides on SCN composites whensintered together. As we know, for most MIEC oxides (such asBa0.5Sr0.5Co0.8Fe0.2O3 − δ), grain growth will decrease the number ofgrain boundaries and has positive effect on oxygen permeation process.On the contrary, for most dual-phasemembrane, because the electronicand ionic transport by different paths, grain growth will break the con-tinuity of electronic and ionic conductors. Therefore, the result of grainsize shrinkagewill increases the areas of phase boundary and has a pos-itive effect on oxygen permeability [29]. Similarly, the SEMmicrographsof the 60SDC-40SCN (Fig. 2c), and 75SDC-25SCN (Fig. 2d) membranepresent compact and no flaw membrane surface.

    3.2. Oxygen permeation measurement

    Fig. 3 shows the temperature dependence of oxygen permeationfluxes of the SDC-SCN dual-phase membranes. In comparison, the oxy-gen permeation performance through the SCNmembranewas also stud-ied in the same conditions. As expected, the oxygen permeation fluxesthrough all the membranes increase with the rising temperature, whichattributed to the promoted surface exchange kinetics and oxygen ionsdiffusion in higher temperatures. Among the three dual-phase mem-branes, 60SDC-40SCN shows the best oxygen permeability. At 1223 K,oxygen permeation flux through the 60SDC-40SCN membrane is about1.54 mL min−1 cm−2, which is higher than the flux of 50SDC-50SCN

    membrane in the same condition. It is because the incremental SDCwhich act as the ionic conductor can accelerate the transportation of ox-ygen ions through themembrane. However, the oxygen permeation fluxof 75SDC-25SCN is not accord with the above conclusion, at 1223 K theoxygen flux of the 75SDC-25SCN is only 0.46mLmin−1 cm−2. This attri-butes to the discontinuous ionic or electronic transport paths formed byexcess ionic conductors prevent the process of oxygen permeation [30].

    As we know, oxygen transport through the dense oxygen perme-ation membrane is controlled by two factors: the surface-exchange ki-netics and the bulk diffusion rate of electrons and ions [31,32]. Inorder to confirm the effects of the two processes on oxygen permeationflux of dual-phase membrane, the relationship of 60SDC-40SCN mem-brane thicknesswith the oxygen permeation fluxwere investigated. Ac-cording to Fig. 4a, increased oxygen permeation fluxes are observed

  • Fig. 4. Thickness dependence of oxygen permeation flux through 60SDC-40SCNmembrane. Oxygen permeation fluxes as functions of (a) membrane thickness,(b) reciprocal of membrane thickness.

    Fig. 5. Reversibility of the oxygen permeation fluxes through the SCN and 60SDC-40SCNmembrane as a function of time while periodically changing the sweep gases at 1223 K.Conditions: FAir = 120 mL min−1, FCO2 = FHe = 60 mL min

    −1, membrane thickness =0.8 mm.

    Fig. 6. (a) Effects of concentration of CO2 in the sweep side on oxygenpermeation fluxes ofthe SCN and dual-phasemembranes. (b) Oxygen permeation fluxes swept byHe and pureCO2. Conditions: FAir = 120 mL min−1, FHe = FCO2 = 60 mL min

    −1, membranethickness = 0.8 mm.

    22 S. Guo et al. / Fuel Processing Technology 154 (2016) 19–26

    when decrease the thickness of the membrane. For example, at 1223 K,the permeation fluxes are 1.54, 1.29 and 1.09mLmin−1 cm−2 formem-branes with the thickness of 0.8, 1.0, and 1.2 mm, respectively. Furthercalculation demonstrates that the value JO2·L for the three membranesalmost remain constant as the function of thickness. In details, theJO2·L value of the 0.8, 1.0 and 1.2 mm thick membrane are 1.23, 1.29,1.31 at 1223 K, which means that the oxygen transport is mainly con-trolled by the oxygen bulk diffusion when the thickness of membranebeyond 0.8mm[33]. However, it is worth noting that the increase of ox-ygen permeation fluxes were not obvious when the thickness of mem-brane decrease b0.8 mm. Fig. 4b shows the oxygen permeation fluxesagainst the reciprocal of thickness from 1073 to 1223 K. It can be seenobviously that as the thickness decrease to 0.6 mm the value of oxygenflux deviates from the linear trend, suggesting that the surface-ex-change kinetics is not negligible in the oxygen permeation process onthis occasion [34,35]. Therefore, further decrease the thickness of mem-brane won't increase the oxygen permeation flux of dual-phasemembrane.

    3.3. CO2-tolerant measurement

    Fig. 5 shows the oxygen permeation fluxes of SCN and 60SDC-40SCNdual-phase membranes as a function of time in the condition of period-ically changing the sweep gas from He to CO2 at 1223 K. As can be seen

    in the Fig. 5a, the oxygen permeation flux of the SCN is about0.23 mL min−1 cm−2 when CO2 acts as the sweep gas at 1223 K. Com-pared with the oxygen flux of SCN membrane swept by He (about2.61 mLmin−1 cm−2), the oxygen permeation flux through SCNmem-brane dropped by 90%.Moreover, when the sweep gas change from CO2

  • 23S. Guo et al. / Fuel Processing Technology 154 (2016) 19–26

    to He again, the oxygen permeation flux through the SCN membranecannot recover the original value immediately, which may attribute tothe retarded oxygen exchange rates caused by the adsorption of CO2on the membrane surface [4,15,20]. Fig. 5b displays the oxygen perme-ation performance of 60SDC-40SCNmembrane in the same condition asabove. The oxygen permeation flux of 60SDC-40SCN membrane sweptby CO2 is 0.52 mL min−1 cm−2 at 1223 K. Followed the sweep gasshift from CO2 to He again, the oxygen permeation flux recover the orig-inal value (1.53mLmin−1 cm−2). Therefore, comparedwith the single-phase SCN membrane, dual-phase membrane shows a better oxygenpermeability and stability in CO2 atmosphere.

    The influence of different concentration of CO2 in the sweep side onoxygen permeation fluxes of SCN and dual-phase SDC-SCNmembraneswere also investigated. As shown in the Fig. 6a, when CO2 concentrationincrease from 0 to 10%, oxygen permeation flux of SCN membranevaries from nearly 2.6 mL min−1 cm−2 to 2.2 mL min−1 cm−2; andfor the 60SDC-40SCN membrane the oxygen permeation flux decreasefrom 1.53 to 1.36 mL min−1 cm−2 at 1223 K; for the 75SDC-25SCNmembrane the oxygen permeation flux has little change.When the con-centration of CO2 increase to 50%, the SCN and 50SDC-50SCN mem-branes exhibit about 85% and 60% oxygen permeation fluxes decreaserespectively, and the 60SDC-40SCN dual-phase membrane displays aless 50% drop. However, for the 75SDC-25SCN membrane when theconcentration of CO2 increases from 0 to 100%, only 21% oxygen perme-ation flux decline is found. The histograms shown in Fig. 6b describe thechange of oxygen permeation fluxes of the SCN and three dual-phasemembranes treated by pure CO2 in the sweep side. It can be seen obvi-ously that 60SDC-40SCN membrane possesses the highest oxygen flux(twice the value of single-phase SCN membrane), and 75SDC-25SCNmembrane exhibits the best CO2-tolerance. These findings demonstratethe improved CO2 tolerant of dual-phasemembranemade by the intro-duction of SDC into SCN oxides.

    Fig. 7a shows the in-situ XRDpatterns of sintered SCN powders in airatmosphere. During the temperatures increasing from room

    Fig. 7. In-situ XRD patterns of SCN composite for increasing temperatures in theatmosphere of (a) air and (b) 50 vol% CO2 and 50 vol% N2. Conditions: heating rate =5 K min−1, equilibration time: 30 min for recording the XRD data at each temperature.

    temperature to 1273 K, no additional phase except perovskite-typeSCN was observed. Additionally, the high temperature phase stabilityof SCN in an atmosphere of 50 vol% CO2-50 vol% N2 was also studiedunder the same test conditions. As shown in Fig. 7b, the phase structureof SCN composite is essentially constant before 1073 K. As temperatureincreasing successively, impure peaks appear and themajor peaks of theSCN becomewide andweak, suggesting the instable phases structure ofSCN, that's why the oxygen permeation flux of SCN membrane declinesharply in the atmosphere of CO2. However, compared with the singleSCNmaterial, SDC doped SCNmembrane exhibits a good phase stabilityin the atmosphere of CO2. As shown in the Fig. 8b, when treated by the50 vol% CO2 and 50 vol% N2, no obvious miscellaneous phase formationcan be detected from the XRD patterns of 60SDC-40SCN composite, in-dicating the stability in a CO2-containing atmosphere.

    Fig. 9 shows the time dependence of oxygen permeation fluxes of60SDC-40SCN membrane swept by pure CO2 at 1223 K. As shown, theoxygen permeation fluxes through the dual-phase membrane varyslightly in the range 0.49 to 0.53 mL min−1 cm−2, and no apparent de-cline is observed. After the long-term stability measurement with60 mL min−1 pure CO2 as the sweep gas, the feed side and permeationside of the dual-phase membrane were analyzed by XRD. As shown inthe Fig. 10, both SDC and SCN remain their own crystal structure, andphase structure of the dual-phase membrane in feed side almost con-stant. In the sweep side, some new diffraction peaks belong to Ag(which acts as the sealed material) can be found. Additionally, the dif-fraction peaks of SCNof the dual-phasemembrane in the sweep side be-come weak, and accompanied by the generation of trace amountsimpure phases, this change possibly come from the diffusion of alkalineearth metals forming carbonates in the surfaces of membrane [36].

    Fig. 11 shows SEM images of the fresh and used 60SDC-40SCNmem-branes. The cross-section of fresh membranes has a typical intercrystal-line discontinuity microstructure with grain boundary clearly visible.The spent membranes shown in Fig. 11b exhibit the similar cross-section morphology to the fresh membrane. Surface microstructure ofthe membranous feed side (Fig. 11c) remains dense and crack-free.Compared with the fresh membrane surface microstructure in Fig. 3,the surface of the feed side becomes rough after permeation measure-ment. In case of the sweep side, as shown in Fig. 11d, significant etchingfeature can be found. It is principally related to the formation of SrCO3during the dwelling time of 120 h. However, from the SEM image ofthe cross section in Fig. 11b, we can confirm that the etching featureonly forming in the surface layer [7,36,37].

    Table 1 lists the oxygen permeation fluxes of several types of dual-phase membranes. As shown, the dual-phase materials which onlyuse pure electronic conductor, like Pd, Fe2O3 and NiFe2O4, act as theelectronic transporting phase exhibit low oxygen permeable becausethe blockade of ionic transportation [41,42]. Then, mixed conductorswere proposed to be substituted for pure electronic conductor to over-come the blockade. Because themixed conductor with higher ionic con-ductivity as the electronic conductor can assist the oxygen ionictransportation, doping Co-containing composites into the fluorite-typeoxides is an effective method to achieve highly oxygen permeable andCO2 stable dual-phase membrane materials. By using this type of dual-phase oxygen permeation membrane, oxygen can be separated fromair by using the exhaust gas CO2 as sweep gas, which can reduce costsand save energy compared with the conventional cryogenic process [3].

    4. Conclusion

    Dual-phase composites oxygen permeation membranes based onCe0.8Sm0.2O2 − δ-SrCo0.9Nb0.1O3 − δ were successfully developed. Theoxygen permeability of different SDC proportions dual-phase compositemembranewas investigated. And the 60SDC-40SCNmembrane exhibit-ed the best oxygen permeability and relatively better CO2 tolerance. Inthe condition of helium sweeping, the oxygen permeation flux of60SDC-40SCN membrane (0.8 mm in thickness) reached as high as

  • Fig. 8. In-situ XRD patterns of 60SDC-40SCN dual-phase composite for increasing temperatures under (a) air and (b) 50 vol% CO2 and 50 vol% N2. Conditions: heating rate = 5 K min−1,equilibration time: 30 min for recording the XRD data at each temperature.

    24 S. Guo et al. / Fuel Processing Technology 154 (2016) 19–26

    1.54 mL min−1 cm−2 at 1223 K. In situ high-temperature X-ray diffrac-tion evidenced that SDC and SCN in 60SDC-40SCNmembrane could re-main their original structure from room temperature to 1223 K in airand 50 vol% CO2/50 vol% N2, which demonstrated the good chemicalstability of 60SDC-40SCN dual-phase membrane in CO2-containing

    Fig. 9. Oxygen permeation fluxes through 60SDC-40SCNmembranes as a function of timeat 1223 K. Conditions: FAir = 120 mL min−1, FCO2 = 60 mL min

    −1, thickness = 0.8 mm.

    atmosphere. During the 120 h oxygen permeation measurement at1223 Kwith pure CO2 as the sweep gas, 60SDC-40SCN (0.8mm in thick-ness)membrane possessed of a stably high oxygen permeation fluxes of0.52 mL min−1 cm−2. All the results demonstrate that the 60SDC–40SCNmembrane exhibits high oxygen permeability and good stabilityin CO2 atmosphere, which indicates a great potential application in oxy-fuel combustion and CO2 capture and storage.

    Fig. 10. XRD patterns of the spent 60SDC-40SCN membranes after treatment in pure CO2atmosphere for 120 h.

  • Fig. 11. SEM micrographs of the fresh and spent 60SDC-40SCN membrane. (a) Cross-section of fresh membrane; (b) cross-section of the spent membrane . (c) Feed side the spentmembrane. (d) Permeation side of the spent membrane.

    Table 1Oxygen permeation flux through different dual-phase membranes in disk geometries.

    Membrane composition Thickness (mm) Temp. (K)JO2 (mL min

    −1 cm−2)Air/He

    JO2 (mL min−1 cm−2)

    Air/CO2 Ref.

    YSZ-Pd 2 1373 0.058 – [38]Ce0.8Sm0.2O1.9-Sm0.8Ca0.2CoO3 0.5 1223 0.23 0.16 [39]Ce0.8Sm0.2O2 − δ-LaBaCo2O5 + δ 0.6 1223 0.62 – [7]Ce0.9Gd0.1O2 − δ-Fe2O3 0.5 1223 0.10 0.08 [40]Ce0.9Gd0.1O2 − δ-NiFe2O4 0.5 1273 0.31 0.27 [20]Ce0.8Sm0.2O2 − δ-PrBaCo1.5Fe0.5O5 + δ 1 1198 – 0.35 [35]Ce0.9Nd0.1O2 − δ-Nd0.6Sr0.4FeO3 − δ 0.6 1223 0.26 0.21 [19]60SDC-40SCN 0.8 1223 1.54 0.52 This work75SDC-25SCN 0.8 1223 0.47 0.38 This work

    25S. Guo et al. / Fuel Processing Technology 154 (2016) 19–26

    Acknowledgements

    This work was supported by the Innovative Research Team Programby theMinistry of Education of China (No. IRT13070), the Project of Pri-ority Academic Program Development of Jiangsu Higher Education In-stitutions (PAPD) and Top-notch Academic Programs Project ofJiangsu Higher Education Institutions (TAPP).

    References

    [1] T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C.D. da Costa, E.F. May,The removal of CO2 and N2 from natural gas: a review of conventional and emergingprocess technologies, J. Pet. Sci. Eng. 94-95 (2012) 123–154.

    [2] M.A. Habib, H.M. Badr, S.F. Ahmed, R. Ben-Mansour, K. Mezghani, S. Imashuku, G.J. laO, Y. Shao-Horn, N.D. Mancini, A. Mitsos, P. Kirchen, A.F. Ghoneim, A review of re-cent developments in carbon capture utilizing oxy-fuel combustion in conventionaland ion transport membrane systems, Int. J. Energy Res. 35 (2011) 741–764.

    [3] F.Y. Liang, H.X. Luo, K. Partovi, O. Ravkina, Z.W. Cao, Y. Liu, J. Caro, A novel CO2-stabledual phase membrane with high oxygen permeability, Chem. Commun. 50 (2014)2451–2454.

    [4] X. Zhu, H. Liu, Y. Cong,W. Yang, Novel dual-phasemembranes for CO2 capture via anoxyfuel route, Chem. Commun. 48 (2012) 251–253.

    [5] C. Gaudillere, J. Garcia-Fayos, J.M. Serra, Enhancing oxygen permeation through hi-erarchically-structured perovskite membranes elaborated by freeze-casting, J.Mater. Chem. A 2 (2014) 3828–3833.

    [6] S. Guo, J. Zhu, Z. Liu, X. Jiang, Z. Zhang, W. Jin, Enhanced high oxygen permeation ofmixed-conducting multichannel hollow fiber membrane via surface modified po-rous layer, Ind. Eng. Chem. Res. 54 (2015) 6985–6992.

    [7] T. Chen, H. Zhao, N. Xu, Y. Li, X. Lu, W. Ding, F. Li, Synthesis and oxygen permeationproperties of a Ce0.8Sm0.2O2 − delta-LaBaCo2O5 + delta dual-phase composite mem-brane, J. Membr. Sci. 370 (2011) 158–165.

    [8] J. Zhu, S. Guo, Z. Zhang, X. Jiang, Z. Liu, W. Jin, CO2-tolerant mixed-conducting mul-tichannel hollow fiber membrane for efficient oxygen separation, J. Membr. Sci. 485(2015) 79–86.

    [9] M. Balaguer, J. Garcia-Fayos, C. Solis, J.M. Serra, Fast oxygen separation through SO2-and CO2-stable dual-phase membrane based on NiFe2O4-Ce0.8Tb0.2O2 − delta, Chem.Mater. 25 (2013) 4986–4993.

    [10] K. Zhang, L. Liu, Z. Shao, R. Xu, J.C.D. da Costa, S. Wang, S. Liu, Robust ion-transporting ceramic membrane with an internal short circuit for oxygen produc-tion, J. Mater. Chem. A 1 (2013) 9150–9156.

    [11] P.M. Geffroy, J. Fouletier, N. Richet, T. Chartier, Rational selection of MIEC materialsin energy production processes, Chem. Eng. Sci. 87 (2013) 408–433.

    [12] Z.P. Shao, W.S. Yang, Y. Cong, H. Dong, J.H. Tong, G.X. Xiong, Investigation of the per-meation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3 − delta oxygenmembrane, J.Membr. Sci. 172 (2000) 177–188.

    [13] T. Nagai, W. Ito, T. Sakon, Relationship between cation substitution and stability ofperovskite structure in SrCoO3 − δ-based mixed conductors, Solid State Ionics 177(2007) 3433–3444.

    [14] J. Zhu, S. Guo, Z. Chu, W. Jin, CO2-tolerant oxygen-permeable perovskite-type mem-branes with high permeability, J. Mater. Chem. A (2015).

    [15] X. Tan, N. Liu, B. Meng, J. Sunarso, K. Zhang, S. Liu, Oxygen permeation behavior ofLa0.6Sr0.4Co0.8Fe0.2O3 hollow fibre membranes with highly concentrated CO2 expo-sure, J. Membr. Sci. 389 (2012) 216–222.

    http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0005http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0005http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0005http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0005http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0005http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0010http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0010http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0010http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0010http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0015http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0015http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0015http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0015http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0020http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0020http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0020http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0025http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0025http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0025http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0030http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0030http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0030http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0035http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0035http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0035http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0035http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0035http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0035http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0035http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0035http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0040http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0040http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0040http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0040http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0045http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0045http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0045http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0045http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0045http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0045http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0045http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0045http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0045http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0045http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0050http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0050http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0050http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0055http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0055http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0060http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0060http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0060http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0060http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0060http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0060http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0060http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0060http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0065http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0065http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0065http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0065http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0070http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0070http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0070http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0075http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0075http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0075http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0075http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0075http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0075http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0075http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0075http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0075

  • 26 S. Guo et al. / Fuel Processing Technology 154 (2016) 19–26

    [16] X. Dong, W. Jin, N. Xu, K. Li, Dense ceramic catalytic membranes and membrane re-actors for energy and environmental applications, Chem. Commun. 47 (2011)10886–10902.

    [17] Y.-f. Bu, D. Ding, S.Y. Lai, D.-C. Chen, X.-H. Xiong, T. Wei, Q. Zhong, Evaluation ofLa0.4Ba0.6Fe0.8Zn0.2O3 − delta + Sm0.2Ce0.8O1.9 as a potential cobalt-free compositecathode for intermediate temperature solid oxide fuel cells, J. Power Sources 275(2015) 808–814.

    [18] Y. Lin, S. Fang, D. Su, K.S. Brinkman, F. Chen, Enhancing grain boundary ionic conduc-tivity in mixed ionic-electronic conductors, Nat. Commun. 6 (2015).

    [19] H. Luo, T. Klande, Z. Cao, F. Liang, H. Wang, J. Caro, A CO2-stable reduction-tolerantNd-containing dual phase membrane for oxyfuel CO2 capture, J. Mater. Chem. A 2(2014) 7780–7787.

    [20] H. Luo, K. Efimov, H. Jiang, A. Feldhoff, H. Wang, J. Caro, CO2-stable and cobalt-freedual-phase membrane for oxygen separation, Angew. Chem. Int. Ed. 50 (2011)759–763.

    [21] V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, F.M. Figueiredo, A.A. Yaremchenko, E.N.Naumovich, F.M.B. Marques, Oxygen permeability of Ce0.8Gd0.2O2 − delta-La0.7Sr0.3MnO3 − delta composite membranes, J. Electrochem. Soc. 147 (2000)2814–2821.

    [22] B. Wang, J. Yi, L. Winnubst, C. Chen, Stability and oxygen permeation behavior ofCe0.8Sm0.2O2 − δ-La0.8Sr0.2CrO3 − δ composite membrane under large oxygen partialpressure gradients, J. Membr. Sci. 286 (2006) 22–25.

    [23] J.J. Liu, T. Liu,W.D.Wang, J.F. Gao, C.S. Chen, Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3 − deltadual-phase composite hollow fiber membrane targeting chemical reactor applica-tions, J. Membr. Sci. 389 (2012) 435–440.

    [24] J.S. Yoon, M.Y. Yoon, E.J. Lee, J.-W. Moon, H.J. Hwang, Influence of Ce0.9Gd0.1O2 − deltaparticles on microstructure and oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3 − deltacomposite membrane, Solid State Ionics 181 (2010) 1387–1393.

    [25] F. Wang, Q. Zhou, T. He, G. Li, H. Ding, Novel SrCo1 − yNbyO3 − δ cathodes for inter-mediate-temperature solid oxide fuel cells, J. Power Sources 195 (2010) 3772–3778.

    [26] Z. Zhang, D. Chen, Y. Chen, Y. Hao, M.O. Tade, Z. Shao, Facile fabrication and im-proved carbon dioxide tolerance of a novel bilayer-structured ceramic oxygen per-meating membrane, J. Membr. Sci. 472 (2014) 10–18.

    [27] X. Dong, W. Jin, N. Xu, Reduction-tolerant oxygen-permeable perovskite-type oxideSr0.7Ba0.3Fe0.9Mo0.1O3 − delta, Chem. Mater. 22 (2010) 3610–3618.

    [28] G. Zhang, Z. Liu, N. Zhu, W. Jiang, X. Dong, W. Jin, A novel Nb2O5-dopedSrCo0.8Fe0.2O3 − delta oxide with high permeability and stability for oxygen separa-tion, J. Membr. Sci. 405 (2012) 300–309.

    [29] H. Luo, B. Tian, Y. Wei, H. Wang, H. Jiang, J. Caro, Oxygen permeability and structuralstability of a novel tantalum-doped perovskite BaCo0.7Fe0.2Ta0.1O3 − delta, AICHE J. 56(2010) 604–610.

    [30] L. Luo, H. Cheng, G. Li, X. Lu, B. Jiang, Oxygen permeability and CO2-tolerance ofCe0.8Gd0.2O2 − delta-LnBaCo2O5 + delta dual-phase membranes, J. Energy Chem. 24(2015) 15–22.

    [31] J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y.S. Lin, J.C.D. da Costa,Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygenseparation, J. Membr. Sci. 320 (2008) 13–41.

    [32] J. Zhu, Z. Liu, S. Guo, W. Jin, Influence of permeation modes on oxygen permeabilityof the multichannel mixed-conducting hollow fibre membrane, Chem. Eng. Sci. 122(2015) 614–621.

    [33] J.H. Joo, K.S. Yun, Y. Lee, J. Jung, C.-Y. Yoo, J.H. Yu, Dramatically enhanced oxygenfluxes in fluorite-rich dual-phase membrane by surface modification, Chem.Mater. 26 (2014) 4387–4394.

    [34] Z. Zhang, Y. Chen, M.O. Tade, Y. Hao, S. Liu, Z. Shao, Tin-doped perovskite mixedconducting membrane for efficient air separation, J. Mater. Chem. A 2 (2014)9666–9674.

    [35] B. Jiang, H. Cheng, L. Luo, X. Lu, Z. Zhou, Oxygen permeation and stability ofCe0.8Gd0.2O2 − delta-PrBaCo2 − xFexO5 + delta dual-phase composite membranes,J. Mater. Sci. Technol. 30 (2014) 1174–1180.

    [36] K. Partovi, M. Bittner, J. Caro, Novel CO2-tolerant Al-containingmembranes for high-temperature oxygen separation, J. Mater. Chem. A 3 (2015) 24008–24015.

    [37] J. Xue, Q. Liao, Y. Wei, Z. Li, H. Wang, A CO2-tolerance oxygen permeable60Ce0.9Gd0.1O2 − δ–40Ba0.5Sr0.5Co0.8Fe0.2O3 − δ dual phase membrane, J. Membr.Sci. 443 (2013) 124–130.

    [38] C.S. Chen, B.A. Boukamp, H.J.M. Bouwmeester, G.Z. Cao, H. Kruidhof, A.J.A. Winnubst,Microstructural development, electrical-properties and oxygen permeation of zirco-nia-palladium composites, Solid State Ionics 76 (1995) 23–28.

    [39] H.B. Li, Y. Liu, X.F. Zhu, Y. Cong, S.P. Xu, W.Q. Xu, W.S. Yang, Oxygen permeationthrough Ca-contained dual-phase membranes for oxyfuel CO2 capture, Sep. Purif.Technol. 114 (2013) 31–37.

    [40] H. Luo, H. Jiang, K. Efimov, F. Liang, H. Wang, J. Caro, CO2-tolerant oxygen-permeableFe2O3-Ce0.9Gd0.1O2 − delta dual phase membranes, Ind. Eng. Chem. Res. 50 (2011)13508–13517.

    [41] J. Xue, Q. Zheng, Y. Wei, K. Yuan, Z. Li, H. Wang, Dual phase composite oxide ofCe0.9Gd0.1O2 − δ-Ba0.5Sr0.5Co0.8Fe0.2O3 − δ with excellent oxygen permeation, Ind.Eng. Chem. Res. 51 (2012) 4703–4709.

    [42] W. Fang, F. Liang, Z. Cao, F. Steinbach, A. Feldhoff, A mixed ionic and electronicconducting dual-phase membrane with high oxygen permeability, Angew. Chem.Int. Ed. 54 (2015) 4847–4850.

    http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0080http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0080http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0080http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0085http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0085http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0085http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0085http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0085http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0085http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0085http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0085http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0085http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0085http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0085http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0085http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0090http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0090http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0095http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0095http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0095http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0095http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0095http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0100http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0100http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0100http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0100http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0105http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0105http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0105http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0105http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0105http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0105http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0105http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0105http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0105http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0105http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0110http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0110http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0110http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0110http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0110http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0110http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0110http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0110http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0110http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0110http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0110http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0110http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0110http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0115http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0115http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0115http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0115http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0115http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0115http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0115http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0115http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0115http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0115http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0120http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0120http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0120http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0120http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0120http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0120http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0120http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0120http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0120http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0125http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0125http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0125http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0125http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0125http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0130http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0130http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0130http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0135http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0135http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0135http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0135http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0135http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0135http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0135http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0140http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0140http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0140http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0140http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0140http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0140http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0140http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0140http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0140http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0145http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0145http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0145http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0145http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0145http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0145http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0145http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0150http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0150http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0150http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0150http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0150http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0150http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0150http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0150http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0150http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0150http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0150http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0150http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0155http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0155http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0155http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0160http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0160http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0160http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0165http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0165http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0165http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0170http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0170http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0170http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0175http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0175http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0175http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0175http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0175http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0175http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0175http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0175http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0175http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0175http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0175http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0180http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0180http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0180http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0185http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0185http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0185http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0185http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0185http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0185http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0185http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0185http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0185http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0185http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0185http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0185http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0190http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0190http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0190http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0195http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0195http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0195http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0195http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0200http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0200http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0200http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0200http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0200http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0200http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0200http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0200http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0200http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0205http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0210http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0210http://refhub.elsevier.com/S0378-3820(16)30310-1/rf0210

    Highly oxygen-permeable and CO2-stable Ce0.8Sm0.2O2−δ-SrCo0.9Nb0.1O3−δ dual-phase membrane for oxygen separation1. Introduction2. Experiment2.1. Preparation of SDC and SCN powders2.2. Membrane preparation and characterization2.3. Oxygen permeation flux measurement

    3. Results and discussion3.1. Phase and microstructure3.2. Oxygen permeation measurement3.3. CO2-tolerant measurement

    4. ConclusionAcknowledgementsReferences