Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M....
date post
05-May-2018Category
Documents
view
245download
5
Embed Size (px)
Transcript of Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M....
Chemistry 360 Dr. Jean M. Standard
Problem Set 1 Solutions 1. Determine the first derivatives of each of the following functions of one variable.
a.)
f (x) = 3x2ex ( is a constant)
" f (x) = 6x 3 x2( )ex b.)
Y (x) = A cos x( ) (A is a constant)
" Y (x) = A sin x( )
c.)
g(y) = 1 2y2
" g (y) = 2y 1 2y2( )1 / 2
d.)
H (T ) = a + bT + cT 2 + dT
(a, b, c, and d are constants)
" H (T ) = b + 2cT dT 2
e.)
u(r) = Ar12
Br6
(A and B are constants)
" u (r) = 12Ar13
+ 6Br7
f.)
s(t) = e3t 1 n(t)[ ]
" s (t) = 3e3t 1 n(t)[ ] e3t
t
2
2. Determine the indefinite or definite integrals of each of the following functions of one variable.
Note: For the solutions below involving indefinite integrals, the constant C is used to correspond to an overall arbitrary constant of integration. a.) kA2 dA (k is a constant)
kA2 dA =k A2 dA
=k A3
3+C .
b.) 3V dV
V1
V2
3V dVV1
V2 =3 V dVV1V2
=3 V2
2
"
#$
%
&'
V1
V2
.
Here, to complete the solution, we must evaluate the result at the limits of integration. The final result is therefore
3V dVV1
V2 =3 V22
2V1
2
2
#
$%
&
'(.
c.) 1V + b dV (b is a constant)
Here, we can let u =V + b . Then, du = dV (since b is a constant). Substituting, the integral becomes 1u du=ln u( )+C.
Expressing the result in terms of V gives
1V + b dV =ln V + b( )+C.
3
2. continued d.) eaRT dT (a and R are constants)
Here, we can let u = aRT . Then, du = aRdT , or alternately, dT = 1aRdu . Substituting, the integral
becomes
eaRT dT = 1aR eu du
= 1aReu +C .
Expressing the result in terms of T gives
eaRT dT = 1aR eaRT +C .
e.) aT 2+ b
T 3!
"#
$
%&dT300
500 (a =250, b=5.0104)
The easiest way to tackle this integral is to break it into the sum of two integrals,
aT 2+ b
T 3!
"#
$
%&dT300
500 =a 1T 2 dT300
500 +b 1T 3 dT300
500
=a T 2 dT300
500 +b T 3 dT300
500
aT 2+ b
T 3!
"#
$
%&dT300
500 =a T 1( )
300
500+b 12 T
2( )300
500.
The next step is to evaluate the result at the limits and substitute the numerical values of a and b,
aT 2+ b
T 3!
"#
$
%&dT300
500 =a T 1( )
300
500+b 12 T
2( )300
500
=a 1500
+ 1300
!
"#
$
%& +
b2 1
500( )2+ 1300( )2
!
"##
$
%&&
=250 1500
+ 1300
!
"#
$
%&+2.5104
1500( )2
+ 1300( )2
!
"##
$
%&&
=250 1.333103( )+2.5104 7.111106( )=0.333+0.178
aT 2+ b
T 3!
"#
$
%&dT300
500 =0.511.
4
3. For each of the following functions of x and y, determine the partial derivatives
fx#
$ %
&
' ( y, f
y#
$ %
&
' ( x,
2 fx2#
$ % %
&
' ( ( y
, 2 fy2#
$ % %
&
' ( ( x
, 2 f
xy
#
$ % %
&
' ( ( , and
2 fyx
#
$ % %
&
' ( ( .
a.)
f (x, y) = x2y + 3y
f x
#
$ %
&
' ( y
= 2xy f y
#
$ %
&
' ( x
= x2 + 3
2 f x2#
$ % %
&
' ( ( y
= 2y 2 f
y2#
$ % %
&
' ( ( x
= 0
2 f x y
#
$ % %
&
' ( ( = 2x
2 f y x
#
$ % %
&
' ( ( = 2x
b.)
f (x, y) = 5ex y + y
f x
#
$ %
&
' ( y
= 5ex y f y
#
$ %
&
' ( x
= 5ex + 1
2 f x2#
$ % %
&
' ( ( y
= 5ex y 2 f
y2#
$ % %
&
' ( ( x
= 0
2 f x y
#
$ % %
&
' ( ( = 5e
x 2 f
y x
#
$ % %
&
' ( ( = 5e
x
c.)
f (x, y) = y n(x) + x n(x)
f x
#
$ %
&
' ( y
= yx
+ 1 + n(x) f y
#
$ %
&
' ( x
= n(x)
2 f x2#
$ % %
&
' ( ( y
= yx2
+ 1x
2 f
y2#
$ % %
&
' ( ( x
= 0
2 f x y
#
$ % %
&
' ( ( =
1x
2 f
y x
#
$ % %
&
' ( ( =
1x
5
3. continued
d.)
f (x, y) = 6x3
f x
#
$ %
&
' ( y
= 18x2 f y
#
$ %
&
' ( x
= 0
2 f x2#
$ % %
&
' ( ( y
= 36x 2 f
y2#
$ % %
&
' ( ( x
= 0
2 f x y
#
$ % %
&
' ( ( = 0
2 f y x
#
$ % %
&
' ( ( = 0
e.)
f (x, y) = xy( )1/ 2
f x
#
$ %
&
' ( y
= 12 x1 / 2 y1 / 2 f
y
#
$ %
&
' ( x
= 12 x1 / 2 y1 / 2
2 f x2#
$ % %
&
' ( ( y
= 14 x3 / 2 y1 / 2
2 f y2#
$ % %
&
' ( ( x
= 14 x1 / 2 y3 / 2
2 f x y
#
$ % %
&
' ( ( =
14 x
1 / 2y1 / 2 2 f
y x
#
$ % %
&
' ( ( =
14 x
1 / 2y1 / 2
f.)
f (x, y) = 3x2 cosy + xy3
f x
#
$ %
&
' ( y
= 6x cos y + y 3 f y
#
$ %
&
' ( x
= 3x 2 sin y + 3xy2
2 f x 2#
$ %
&
' ( y
= 6 cos y 2 f
y 2#
$ %
&
' ( x
= 3x 2 cos y + 6xy
2 f x y
#
$ %
&
' ( = 6x sin y + 3y 2
2 f y x
#
$ %
&
' ( = 6x sin y + 3y 2
6
4. For each of the following functions of two variables, evaluate the two first partial derivatives. [Where it appears in the expressions below, R corresponds to the gas constant.]
a.)
H (T ,P) = 32 R nT PnP + 3T2P
HT
#
$ %
&
' ( P
= 3R2T
+ 32P
H P
#
$ %
&
' ( T
= 1 nP 3T2P2
b.)
s(v, t) = 12 vt2 + vev
s v#
$ %
&
' ( t
= 12 t2 + ev vev
s t#
$ %
&
' ( v
= vt
c.)
g(x, y) = e3x 1 x2( ) y3ny
g x
#
$ %
&
' ( y
= e3x 3 1 x2( ) 2x* + , - . / y3ny
g y
#
$ %
&
' ( x
= e3x 1 x2( ) 3y2ny + y2( )
d.)
P(V ,T ) = RTV
1 + bV( )
PV#
$ %
&
' ( T
= RTV 2
PT#
$ %
&
' ( V
= RV
1 + bV( )
e.)
u(r, ) = 32 r2cos rersin
u r#
$ %
&
' (
= 3rcos sin er + rer( )
u
$
% &
'
( ) r
= 32 r2sin rercos
7
4. continued
f.)
H (T ,P) = 32 RT + RT2Pe3P
HT
#
$ %
&
' ( P
= 32 R + 2RTPe3P
H P
#
$ %
&
' ( T
= RT 2 e3P 3Pe3P( )
g.)
P(V ,T ) = RT + RTVnV
PV#
$ %
&
' ( T
= RT nV + 1( )
PT#
$ %
&
' ( V
= R + RVnV
5. For each of the following functions of three variables, evaluate the requested partial derivatives.
a.)
r = x2 + y2 + z2 ; evaluate
rx#
$ %
&
' ( y,z
.
r x
#
$ %
&
' ( y,z
= x x2 + y2 + z2( )1 / 2 = xr
b.)
y = r sin cos ; evaluate
y
$
% &
'
( ) r,
.
y
$
% &
'
( ) r,
= r sin sin
8
6. Evaluate the following expressions using the ideal gas equation of state.
a.)
PT#
$ %
&
' ( Vm
The partial derivative required involves P and also requires
Vm to be held constant. Therefore, the ideal gas equation of state should be solved for P and written in terms of
Vm before the partial derivative is evaluated,
P = nRTV
= RTVm
.
Then, the partial derivative may be evaluated,
PT#
$ %
&
' ( Vm
= RVm
.
b.)
PVm
#
$ %
&
' (