Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm alumina …etemadi/ee324/Homework/Fall... ·...

19
Problem 2.11 A 50-microstrip line uses a 0.6-mm alumina substrate with ε r = 9. Use CD Module 2.3 to determine the required strip width w. Include a printout of the screen display. Solution: According to the solution provided by CD Module 2.3, the required strip width is w = 0.613 mm.

Transcript of Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm alumina …etemadi/ee324/Homework/Fall... ·...

  • Problem 2.11 A 50-Ω microstrip line uses a 0.6-mm alumina substrate withεr = 9.Use CD Module 2.3 to determine the required strip widthw. Include a printout of thescreen display.

    Solution: According to the solution provided by CD Module 2.3, the required stripwidth is

    w = 0.613 mm.

  • Problem 2.37 A lossless transmission line is terminated in a short circuit. Howlong (in wavelengths) should the line be for it to appear as an open circuit at its inputterminals?

    Solution: From Eq. (2.84),Zscin = jZ0 tanβ l . If β l = (π/2+nπ), thenZscin = j∞ (Ω).

    Hence,

    l =λ2π

    (π2

    +nπ)

    =λ4

    +nλ2

    .

    This is evident from Figure 2.19(d).

  • Problem 2.39 A 75-Ω resistive load is preceded by aλ/4 section of a 50-Ω losslessline, which itself is preceded by anotherλ/4 section of a 100-Ω line. What is theinput impedance? Compare your result with that obtained through two successiveapplications of CD Module 2.5.

    Solution: The input impedance of theλ/4 section of line closest to the load is foundfrom Eq. (2.97):

    Zin =Z20ZL

    =502

    75= 33.33 Ω.

    The input impedance of the line section closest to the load can be consideredas theload impedance of the next section of the line. By reapplying Eq. (2.97), thenextsection ofλ/4 line is taken into account:

    Zin =Z20ZL

    =1002

    33.33= 300Ω.

  • Problem 2.40 A 100-MHz FM broadcast station uses a 300-Ω transmission linebetween the transmitter and a tower-mounted half-wave dipole antenna. The antennaimpedance is 73Ω. You are asked to design a quarter-wave transformer to match theantenna to the line.

    (a) Determine the electrical length and characteristic impedance of the quarter-wave section.

    (b) If the quarter-wave section is a two-wire line withD = 2.5 cm, and the wiresare embedded in polystyrene withεr = 2.6, determine the physical length ofthe quarter-wave section and the radius of the two wire conductors.

    Solution:(a) For a match condition, the input impedance of a load must match that of the

    transmission line attached to the generator. A line of electrical lengthλ/4 can beused. From Eq. (2.97), the impedance of such a line should be

    Z0 =√

    ZinZL =√

    300×73= 148Ω.

    (b)λ4

    =up4 f

    =c

    4√

    εr f=

    3×1084√

    2.6×100×106= 0.465 m,

    and, from Table 2-2,

    Z0 =120√

    εln

    (

    Dd

    )+

    √(Dd

    )2−1

    Ω.

    Hence,

    ln

    (

    Dd

    )+

    √(Dd

    )2−1

    = 148

    √2.6

    120= 1.99,

    which leads to (Dd

    )+

    √(Dd

    )2−1 = 7.31,

    and whose solution isD/d = 3.73. Hence,d = D/3.73= 2.5 cm/3.73= 0.67 cm.

  • Problem 2.41 A 50-Ω lossless line of lengthl = 0.375λ connects a 300-MHzgenerator with̃Vg = 300 V andZg = 50 Ω to a loadZL . Determine the time-domaincurrent through the load for:

    (a) ZL = (50− j50) Ω(b) ZL = 50 Ω(c) ZL = 0 (short circuit)

    For (a), verify your results by deducing the information you need from the outputproducts generated by CD Module 2.4.

    Solution:

    Vg Zin Z0ZL~

    +

    -

    +

    -

    Transmission line

    Generator Loadz = -l z = 0

    Vg

    Ii

    Zin

    ~

    Vi~~

    +

    -

    (50-j50) Ω

    l = 0.375 λ

    = 50 Ω

    50 Ω

    Zg

    Figure P2.41: Circuit for Problem 2.41(a).

    (a) ZL = (50− j50) Ω, β l = 2πλ ×0.375λ = 2.36 (rad)= 135◦.

    Γ =ZL −Z0ZL +Z0

    =50− j50−5050− j50+50 =

    − j50100− j50 = 0.45e

    − j63.43◦ .

  • Application of Eq. (2.79) gives:

    Zin = Z0

    [ZL + jZ0 tanβ lZ0 + jZL tanβ l

    ]= 50

    [(50− j50)+ j50tan135◦50+ j(50− j50) tan135◦

    ]= (100+ j50) Ω.

    Using Eq. (2.82) gives

    V+0 =

    (ṼgZin

    Zg +Zin

    )(1

    ejβ l +Γe− jβ l

    )

    =300(100+ j50)

    50+(100+ j50)

    (1

    ej135◦ +0.45e− j63.43◦e− j135◦

    )

    = 150e− j135◦

    (V),

    ĨL =V+0Z0

    (1−Γ) = 150e− j135◦

    50(1−0.45e− j63.43◦) = 2.68e− j108.44◦ (A),

    iL(t) = Re[ĨLejωt ]

    = Re[2.68e− j108.44◦ej6π×10

    8t ]

    = 2.68cos(6π ×108t −108.44◦) (A).

    (b)

    ZL = 50 Ω,Γ = 0,

    Zin = Z0 = 50 Ω,

    V+0 =300×5050+50

    (1

    ej135◦ +0

    )= 150e− j135

    ◦(V),

    ĨL =V+0Z0

    =15050

    e− j135◦= 3e− j135

    ◦(A),

    iL(t) = Re[3e− j135◦ej6π×10

    8t ] = 3cos(6π ×108t −135◦) (A).

    (c)

    ZL = 0,

    Γ = −1,

    Zin = Z0

    (0+ jZ0 tan135◦

    Z0 +0

    )= jZ0 tan135

    ◦ = − j50 (Ω),

    V+0 =300(− j50)50− j50

    (1

    ej135◦ −e− j135◦)

    = 150e− j135◦

    (V),

  • ĨL =V+0Z0

    [1−Γ] = 150e− j135◦

    50[1+1] = 6e− j135

    ◦(A),

    iL(t) = 6cos(6π ×108t −135◦) (A).

    From output of Module 2.4, atd = 0 (load)

    Ĩ(d) = 2.68∠−1.89 rad,

    which corresponds toĨ(d) = 2.68∠−108.29◦ .

    The equivalent time-domain current atf = 300 MHz is

    iL(t) = 2.68cos(6π ×108t −108.29◦) (A).

  • Problem 2.42 A generator with̃Vg = 300 V andZg = 50 Ω is connected to a loadZL = 75 Ω through a 50-Ω lossless line of lengthl = 0.15λ .

    (a) ComputeZin, the input impedance of the line at the generator end.

    (b) ComputẽIi andṼi .

    (c) Compute the time-average power delivered to the line,Pin = 12Re[Ṽi Ĩ∗i ].

    (d) Compute ṼL , ĨL , and the time-average power delivered to the load,PL = 12Re[ṼL Ĩ

    ∗L ]. How doesPin compare toPL? Explain.

    (e) Compute the time-average power delivered by the generator,Pg, and the time-average power dissipated inZg. Is conservation of power satisfied?

    Solution:

    Vg Zin Z0~

    +

    -

    +

    -

    Transmission line

    Generator Loadz = -l z = 0

    Vg

    IiZg

    Zin

    ~

    Vi~~

    +

    -

    ⇓l = 0.15 λ

    = 50 Ω

    50 Ω

    75 Ω

    Figure P2.42: Circuit for Problem 2.42.

    (a)

    β l =2πλ

    ×0.15λ = 54◦,

  • Zin = Z0

    [ZL + jZ0 tanβ lZ0 + jZL tanβ l

    ]= 50

    [75+ j50tan54◦

    50+ j75tan54◦

    ]= (41.25− j16.35) Ω.

    (b)

    Ĩi =Ṽg

    Zg +Zin=

    30050+(41.25− j16.35) = 3.24e

    j10.16◦ (A),

    Ṽi = ĨiZin = 3.24ej10.16◦(41.25− j16.35) = 143.6e− j11.46◦ (V).

    (c)

    Pin =12Re[Ṽi Ĩ

    ∗i ] =

    12Re[143.6e− j11.46

    ◦ ×3.24e− j10.16◦ ]

    =143.6×3.24

    2cos(21.62◦) = 216 (W).

    (d)

    Γ =ZL −Z0ZL +Z0

    =75−5075+50

    = 0.2,

    V+0 = Ṽi

    (1

    ejβ l +Γe− jβ l

    )=

    143.6e− j11.46◦

    ej54◦ +0.2e− j54◦= 150e− j54

    ◦(V),

    ṼL = V+0 (1+Γ) = 150e

    − j54◦(1+0.2) = 180e− j54◦

    (V),

    ĨL =V+0Z0

    (1−Γ) = 150e− j54◦

    50(1−0.2) = 2.4e− j54◦ (A),

    PL =12Re[ṼL Ĩ

    ∗L ] =

    12Re[180e− j54

    ◦ ×2.4ej54◦ ] = 216 (W).

    PL = Pin, which is as expected because the line is lossless; power input to the lineends up in the load.

    (e)Power delivered by generator:

    Pg =12Re[ṼgĨi ] =

    12Re[300×3.24ej10.16◦ ] = 486cos(10.16◦) = 478.4 (W).

    Power dissipated in Zg:

    PZg =12Re[ĨiṼZg] =

    12Re[Ĩi Ĩ

    ∗i Zg] =

    12|Ĩi |2Zg =

    12

    (3.24)2×50= 262.4 (W).

    Note 1:Pg = PZg +Pin = 478.4 W.

  • Problem 2.44 For the circuit shown in Fig. P2.44, calculate the average incidentpower, the average reflected power, and the average power transmittedinto the infinite100-Ω line. Theλ/2 line is lossless and the infinitely long line is slightly lossy. (Hint:The input impedance of an infinitely long line is equal to its characteristic impedanceso long asα 6= 0.)

    Z0 = 50 Ω Z1 = 100 Ω

    λ/250 Ω

    2 V

    Pavi

    Pavr

    Pavt

    8

    +

    Figure P2.44: Circuit for Problem 2.44.

    Solution: Considering the semi-infinite transmission line as equivalent to a load(since all power sent down the line is lost to the rest of the circuit),ZL = Z1 = 100Ω.Since the feed line isλ/2 in length, Eq. (2.96) givesZin = ZL = 100 Ω andβ l = (2π/λ )(λ/2) = π, soe± jβ l = −1. Hence

    Γ =ZL −Z0ZL +Z0

    =100−50100+50

    =13.

    Also, converting the generator to a phasor givesṼg = 2ej0◦

    (V). Plugging all theseresults into Eq. (2.82),

    V+0 =

    (ṼgZin

    Zg +Zin

    )(1

    ejβ l +Γe− jβ l

    )=

    (2×10050+100

    )[1

    (−1)+ 13(−1)

    ]

    = 1ej180◦

    = −1 (V).

    From Eqs. (2.104), (2.105), and (2.106),

    Piav =

    ∣∣V+0∣∣2

    2Z0=

    |1ej180◦ |22×50 = 10.0 mW,

    Prav = −|Γ|2Piav = −∣∣∣∣13

    ∣∣∣∣2

    ×10 mW= −1.1 mW,

    Pav = Ptav = P

    iav+P

    rav = 10.0 mW−1.1 mW= 8.9 mW.

  • Problem 2.47 Use the Smith chart to find the reflection coefficient correspondingto a load impedance of

    (a) ZL = 3Z0(b) ZL = (2− j2)Z0(c) ZL = − j2Z0(d) ZL = 0 (short circuit)

    Solution: Refer to Fig. P2.47.(a) PointA is zL = 3+ j0. Γ = 0.5e0

    (b) PointB is zL = 2− j2. Γ = 0.62e−29.7◦

    (c) PointC is zL = 0− j2. Γ = 1.0e−53.1◦

    (d) PointD is zL = 0+ j0. Γ = 1.0e180.0◦

  • 0.1

    0.1

    0.1

    0.2

    0.2

    0.2

    0.3

    0.3

    0.3

    0.4

    0.4

    0.4

    0.5

    0.5

    0.5

    0.6

    0.6

    0.6

    0.7

    0.7

    0.7

    0.8

    0.8

    0.8

    0.9

    0.9

    0.9

    1.0

    1.0

    1.0

    1.2

    1.2

    1.2

    1.4

    1.4

    1.4

    1.6

    1.6

    1.6

    1.8

    1.8

    1.8

    2.0

    2.0

    2.0

    3.0

    3.0

    3.0

    4.0

    4.0

    4.0

    5.0

    5.0

    5.0

    10

    10

    10

    20

    20

    20

    50

    50

    50

    0.2

    0.2

    0.2

    0.2

    0.4

    0.4

    0.4

    0.4

    0.6

    0.6

    0.6

    0.6

    0.8

    0.8

    0.8

    0.8

    1.0

    1.0

    1.0

    1.0

    20-20

    30-30

    40-40

    50

    -50

    60

    -60

    70

    -70

    80

    -80

    90

    -90

    100

    -100

    110

    -110

    120

    -120

    130

    -130

    140

    -140

    150

    -150

    160

    -160

    170

    -170

    180

    ±

    0.04

    0.04

    0.05

    0.05

    0.06

    0.06

    0.07

    0.07

    0.08

    0.08

    0.09

    0.09

    0.1

    0.1

    0.11

    0.11

    0.12

    0.12

    0.13

    0.13

    0.14

    0.14

    0.15

    0.15

    0.16

    0.16

    0.17

    0.17

    0.18

    0.18

    0.190.19

    0.2

    0.2

    0.21

    0.210.22

    0.220.23

    0.230.24

    0.24

    0.25

    0.25

    0.26

    0.26

    0.27

    0.27

    0.28

    0.28

    0.29

    0.29

    0.3

    0.3

    0.31

    0.31

    0.32

    0.32

    0.33

    0.33

    0.34

    0.34

    0.35

    0.35

    0.36

    0.36

    0.37

    0.37

    0.38

    0.38

    0.39

    0.39

    0.4

    0.4

    0.41

    0.41

    0.42

    0.42

    0.43

    0.43

    0.44

    0.44

    0.45

    0.45

    0.46

    0.46

    0.47

    0.47

    0.48

    0.48

    0.49

    0.49

    0.0

    0.0

    AN

    GL

    E O

    F R

    EF

    LE

    CT

    ION

    CO

    EF

    FIC

    IEN

    T IN

    DE

    GR

    EE

    S

    —>

    WA

    VE

    LE

    NG

    TH

    S T

    OW

    AR

    D G

    EN

    ER

    AT

    OR

    —>

    <—

    WA

    VE

    LE

    NG

    TH

    S T

    OW

    AR

    D L

    OA

    D <

    IND

    UC

    TIV

    E R

    EA

    CT

    AN

    CE

    CO

    MPO

    NEN

    T (+

    jX/Z

    o), O

    R CA

    PACI

    TIVE

    SUSC

    EPTA

    NCE (+

    jB/Yo)

    CAPAC

    ITIVE

    REAC

    TANC

    E COM

    PON

    ENT

    (-j

    X/Zo

    ), O

    R IN

    DU

    CT

    IVE

    SU

    SCE

    PT

    AN

    CE

    (-j

    B/

    Yo

    )

    RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

    A

    B

    C

    D

    Figure P2.47: Solution of Problem 2.47.

  • Problem 2.48 Repeat Problem 2.47 using CD Module 2.6.

    Solution:

    Figure P2.48(a)

  • Figure P2.48(b)

  • Figure P2.48(c)

  • Figure P2.48(d)

  • Problem 2.49 Use the Smith chart to find the normalized load impedancecorresponding to a reflection coefficient of

    (a) Γ = 0.5(b) Γ = 0.5∠60◦

    (c) Γ = −1(d) Γ = 0.3∠−30◦

    (e) Γ = 0(f) Γ = j

    0.1

    0.1

    0.1

    0.2

    0.2

    0.2

    0.3

    0.3

    0.3

    0.4

    0.4

    0.4

    0.5

    0.5

    0.5

    0.6

    0.6

    0.6

    0.7

    0.7

    0.7

    0.8

    0.8

    0.8

    0.9

    0.9

    0.9

    1.0

    1.0

    1.0

    1.2

    1.2

    1.2

    1.4

    1.4

    1.4

    1.6

    1.6

    1.6

    1.8

    1.8

    1.8

    2.0

    2.0

    2.0

    3.0

    3.0

    3.0

    4.0

    4.0

    4.0

    5.0

    5.0

    5.0

    10

    10

    10

    20

    20

    20

    50

    50

    50

    0.2

    0.2

    0.2

    0.2

    0.4

    0.4

    0.4

    0.4

    0.6

    0.6

    0.6

    0.6

    0.8

    0.8

    0.8

    0.8

    1.0

    1.0

    1.0

    1.0

    20-20

    30-30

    40-40

    50

    -50

    60

    -60

    70

    -70

    80

    -80

    90

    -90

    100

    -100

    110

    -110

    120

    -120

    130

    -130

    140

    -140

    150

    -150

    160

    -160

    170

    -170

    180

    ±

    0.04

    0.04

    0.05

    0.05

    0.06

    0.06

    0.07

    0.07

    0.08

    0.08

    0.09

    0.09

    0.1

    0.1

    0.11

    0.11

    0.12

    0.12

    0.13

    0.13

    0.14

    0.14

    0.15

    0.15

    0.16

    0.16

    0.17

    0.17

    0.18

    0.18

    0.190.19

    0.2

    0.2

    0.21

    0.210.22

    0.220.23

    0.230.24

    0.24

    0.25

    0.25

    0.26

    0.26

    0.27

    0.27

    0.28

    0.28

    0.29

    0.29

    0.3

    0.3

    0.31

    0.31

    0.32

    0.32

    0.33

    0.33

    0.34

    0.34

    0.35

    0.35

    0.36

    0.36

    0.37

    0.37

    0.38

    0.38

    0.39

    0.39

    0.4

    0.4

    0.41

    0.41

    0.42

    0.42

    0.43

    0.43

    0.44

    0.44

    0.45

    0.45

    0.46

    0.46

    0.47

    0.47

    0.48

    0.48

    0.49

    0.49

    0.0

    0.0

    AN

    GL

    E O

    F R

    EF

    LE

    CT

    ION

    CO

    EF

    FIC

    IEN

    T IN

    DE

    GR

    EE

    S

    —>

    WA

    VE

    LE

    NG

    TH

    S T

    OW

    AR

    D G

    EN

    ER

    AT

    OR

    —>

    <—

    WA

    VE

    LE

    NG

    TH

    S T

    OW

    AR

    D L

    OA

    D <

    IND

    UC

    TIV

    E R

    EA

    CT

    AN

    CE

    CO

    MPO

    NEN

    T (+

    jX/Z

    o), O

    R CA

    PACI

    TIVE

    SUSC

    EPTA

    NCE (+

    jB/Yo)

    CAPAC

    ITIVE

    REAC

    TANC

    E COM

    PON

    ENT

    (-j

    X/Zo

    ), O

    R IN

    DU

    CT

    IVE

    SU

    SCE

    PT

    AN

    CE

    (-j

    B/

    Yo

    )

    RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

    A’

    B’

    C’

    D’

    E’

    F’

    Figure P2.49: Solution of Problem 2.49.

    Solution: Refer to Fig. P2.49.

  • (a) PointA′ is Γ = 0.5 atzL = 3+ j0.(b) PointB′ is Γ = 0.5ej60

    ◦atzL = 1+ j1.15.

    (c) PointC ′ is Γ = −1 atzL = 0+ j0.(d) PointD′ is Γ = 0.3e− j30

    ◦atzL = 1.60− j0.53.

    (e) PointE′ is Γ = 0 atzL = 1+ j0.(f) PointF ′ is Γ = j atzL = 0+ j1.

    2.112.372.392.402.412.422.442.472.482.49