Premier fascicule de mathématiques pour préparer le...

32
Mathématiques, 2013 2014 Collège Montgaillard, 28 novembre 2013 Premier fascicule de mathématiques pour préparer le brevet des collèges (et pour après le collège) 28 NOVEMBRE 2013 COLLEGE MONTGAILLARD (Saint Denis de la Réunion) Site du collège : http ://college-montgaillard.ac-reunion.fr α désigne un angle aïgu, nous avons : (cos α) 2 + (sin α) 2 =1 Si le triangle RUN est rectangle en U alors nous pouvons écrire (d’après le théorème de Pythagore) : RN 2 = RU 2 + UN 2 Lorsque deux événements A et B sont incompatibles alors : p(A ou B)= p(A)+ p(B) 1

Transcript of Premier fascicule de mathématiques pour préparer le...

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

Premier fascicule de mathématiques pour préparer le brevet des collèges(et pour après le collège)

28 NOVEMBRE 2013

COLLEGE MONTGAILLARD (Saint Denis de la Réunion)Site du collège : http ://college-montgaillard.ac-reunion.fr

• α désigne un angle aïgu, nous avons : (cosα)2 + (sinα)2 = 1

• Si le triangle RUN est rectangle en U alors nous pouvons écrire (d’après lethéorème de Pythagore) :

RN2 = RU 2 + UN2

• Lorsque deux événements A et B sont incompatibles alors :

p(A ouB) = p(A) + p(B)

1

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

Voici le premier fascicule de mathématiques, le deuxième fascicule vous sera

donné en 2014.

Ce fascicule a été élaboré par les professeurs de mathématiques de 3ème ducollège MONTGAILLARD pour la sixième année consécutive. Des améliorations

ont été apportées, les exercices traîtés dans ce livret sont importants, à biencomprendre.

Ce fascicule ne remplacera jamais le travail fait en classe avec votre professeurde mathématiques. Ce livret (riche en informations) est un complément du coursde votre enseignant.

Ce fascicule a pour but de vous aider dans vos révisions et vous sera très utilepour le brevet des collèges (DNB) en juin 2014.

Ce fascicule vous servira très certainement l’an prochain en seconde générale

et technologique (de nombreux chapitres (fonctions, probabilités,...) seront revuset approfondis en 2 GT) mais aussi en lycée professionnel. Gardez le et prenez en

soin.

Toute l’équipe pédagogique de mathématiques vous souhaite une bonne réussiteau DNB. Nous espérons que ce document va vous donner le goût des mathéma-

tiques, l’envie de travailler cette discipline.

Bonne lecture, travaillez bien, refaites les exercices. Nous vous souhaitons une

bonne année scolaire 2013− 2014 en particulier en cours de mathématiques.

Enfin, le lien vers le site de mathématiques de M. MORICEAU est le suivant :

http ://reunionammaths.pagesperso-orange.fr/

2

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

SOMMAIRE

Intitulé du thème Séquences concernées

ARITHMETIQUE Séquences 1 et 11

RAPPELS sur les fractions, utile dans de

puissances, nombres relatifs nombreuses séquences

THEOREME DE PYTHAGORE Séquences 2 et 4

RACINE CARREE Séquences 3 et 32

EQUATIONS et INEQUATIONS Séquences 5, 27, 30 et 32

ANGLE au CENTRE, angle INSCRIT Séquence 6

LES PROBABILITES Séquences 7 et 26

RAPPELS sur la utile dans de

proportionnalité nombreuses séquences

THEOREME DE THALES Séquences 8 et 12

3

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

ARITHMÉTIQUE

I. Critères de divisibilité

• Un nombre entier est divisible par 2 si son chiffre des unités est 0 ou 2 ou 4 ou 6 ou 8.

• Un nombre entier est divisible par 3 si la somme de ses chiffres est divisible par 3.

• Un nombre entier est divisible par 5 si son chiffre des unités est 0 ou 5.

• Un nombre entier est divisible par 9 si la somme de ses chiffres est divisible par 9.

• Un nombre entier est divisible par 10 si son chiffre des unités est 0.

II. PGCD

Soit a et b deux nombres entiers positifs (entiers naturels).��

��Un diviseur commun aux nombres a et b est un entier naturel qui divise à la fois a et b.

On appelle PGCD de a et b le plus grand des diviseurs communs à a et b.

III. Méthodes pour calculer le PGCD de deux nombres

1) Première méthode : à l’aide des diviseurs

Pour déterminer le PGCD de deux nombres entiers a et b, nous devons :

• dresser la liste des diviseurs du nombre a.

• dresser la liste des diviseurs du nombre b.

• dresser la liste des diviseurs communs aux nombres a et b.

• Le PGCD des deux nombres a et b est le plus grand de ces diviseurs communs.

2) Deuxième méthode : méthode des soustractions successives

• Soustraire le plus petit nombre au plus grand nombre.

• On prend les deux plus petits nombres et on recommence l’étape précédente, oncontinue jusqu’à l’obtention d’un résultat nul.

• le PGCD des deux nombres est le dernier résultat non nul.

3) Troisième méthode : méthode des divisions successives (ALGORITHME d’EUCLIDE)

• On effectue la division euclidienne du plus grand des deux nombres par le plus petit nombre.

→ Si le reste de la division euclidienne précédente est NUL alors le PGCD des deux nombresest le diviseur de la division précédente.

→ Si le reste de la division euclidienne précédente n’est pas NUL alors on renouvelle l’étapeprécédente en considérant le diviseur et le reste de la division euclidienne précédente et ainside suite.

• On arrête le procédé lorsque nous obtenons un reste NUL et le PGCD des deux nombres estle dernier reste non nul.

4

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

IV. Nombres premiers entre eux.

1. Définition :

Deux nombres premiers entre eux sont deux nombres qui ont un unique diviseur commun :1.

2. Propriété :�

�Si le PGCD de deux nombres est égal à 1 alors ces deux nombres sont premiers entre eux.

V. Fractions irréductibles.

1. Définition :

Une fraction irréductible est une fraction que l’on ne peut plus simplifier.

2. Propriété :

Si le dénominateur et le numérateur d’une fraction sont des nombres premiers entre eux alorscette fraction est irréductible.

3. Propriété :

En divisant le dénominateur et le numérateur d’une fraction par le PGCD de ces deux nombreson obtient une fraction irréductible.

ExercicesPremier exercice

Énoncé :

1. Calculer le PGCD de 182 et 117 à l’aide de la méthode des soustractions successives

2. En déduire la forme irréductible de la fraction117

182

Correction :

1. Déterminons le PGCD des nombres 182 et 117 à l’aide de la méthode des soustractionssuccessives.

182 − 117 = 65117 − 65 = 5265 − 52 = 1352 − 13 = 3939 − 13 = 2626 − 13 = 1313 − 13 = 0

5

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

Le dernier résultat non nul est 13, par conséquent : PGCD(182; 117) = 13.

2. Pour rendre la fraction117

182irréductible, divisons 117 et 182 par 13 (13 est le PGCD de

182 et 117).

117 ÷ 13 = 9 et 182 ÷ 13 = 14

On peut écrire :117

182=

9

14

Deuxième exercice

Énoncé :

1. Déterminer le PGCD des nombres 135 et 108.

2. Marc a 108 billes rouges et 135 billes noires. Il les répartit en paquets :

• les paquets contiennent des billes des deux couleurs et ont des compositions identiques.

• toutes les billes rouges et toutes les billes noires sont utilisées.

a. Quel nombre maximal de paquets Marc pourra-t-il réaliser ?

b. Quelle sera la composition de chaque paquet ?

Correction :

1. Déterminons le PGCD des nombres 135 et 108 à l’aide de l’algorithme d’Euclide.

135 = 108 × 1 + 27108 = 27 × 4 + 0

Le dernier reste non nul est 27, par conséquent : PGCD(108; 135) = 27.

2. a) Marc utilise toutes les billes et les paquets doivent être identiques, le nombre de paquetsdoit être un diviseur commun à 108 et 135. On cherche le nombre maximum de paquets soitle plus grand diviseur commun à ces deux nombres. On cherche donc le PGCD de 108 et 135.D’après la question précédente, on peut dire que Marc pourra réaliser au maximum 27 paquetsidentiques.

b) 135 ÷ 27 = 5 et 108 ÷ 27 = 4. Chaque paquet sera composé de 4 billes rouges et 5 billesnoires.

6

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

Rappels

I. Nombres relatifs

1) Addition et soustraction

• Deux nombres de même signe : la somme a le même signe que les deux nombres et onajoute les distances à zéro.

• Deux nombres de signes contraires : la somme a le même signe que celui qui est le plusloin de zéro et on calcule la différence : « plus grande distance à zéro » - « plus petite distanceà zéro ».

• Soustraire un nombre revient à additionner son opposé :

x − y = x + (−y)

2) Multiplication et division (règle des signes)

• Le produit (ou quotient) de deux nombres de même signe est positif.

• Le produit (ou quotient) de deux nombres de signes contraires est négatif

II. Écritures fractionnaires

1) quotients égaux, simplification : pour b 6= 0 et k 6= 0a × k

b × k=

a

b

2) addition et soustraction : pour c 6= 0

a

c+

b

c=

a + b

cet

a

c− b

c=

a − b

c

3) multiplication : pour b 6= 0 et d 6= 0

a

b× c

d=

a × c

b × d

4) division : pour b 6= 0, c 6= 0 et d 6= 0

a

b÷ c

d=

a

b× d

c

7

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

III. Puissances

a et b sont deux nombres quelconques ; n et p sont des nombres entiers.

an+p = an × ap et an×p = (an)p

pour a 6= 0,

a−n =1

anet an−p =

an

ap

(a × b)n = an × bn et pour b 6= 0

(

a

b

)n

=an

bn

a0 = 1 a1 = a 0n = 0 (avec n 6= 0) 1n = 1

IV. Écriture scientifique

Un nombre est en écriture scientifique s’il est de la forme a × 10p avec :

✍ a est un nombre décimal dont la partie entière est un nombre compris entre 1 et 9

✍ p est un entier relatif

Exercices

Premier exercice

Énoncé :

Calculer l’expression suivante (attention aux priorités de calculs)

A = (−4) × (−2) + (5 + 3 × (−7) − 4) − 3

Correction :

A = (−4) × (−2) + (5 + 3 × (−7) − 4) − 3= 8 + (5 − 21 − 4) − 3= 8 − 20 − 3

A = −15

8

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

Deuxième exercice

Énoncé :

Calculer l’expression suivante. Donner le résultat sous la forme d’une fraction irréductible.

B =10

9÷ 25

6− 21

8× 22

35

Correction :

B =10

9÷ 25

6− 21

8× 22

35

=10

9× 6

25− 21

8× 22

35

=5 × 2 × 3 × 2

3 × 3 × 5 × 5− 7 × 3 × 11 × 2

4 × 2 × 7 × 5

=4

15− 33

20

=16

60− 99

60

=16 − 99

60

B =−83

60

Troisième exercice

Énoncé :

Calculer les expressions suivantes.

C =214

216× 5−2 D =

(−6)4

34E =

32 + 42

52

Correction :

C =214

216× 5−2

= 214−16 × 5−2

= 2−2 × 5−2

= (2 × 5)−2

= 10−2

=1

100C = 0,01

9

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

D =(−6)4

34

=

(

−6

3

)4

= (−2)4

D = 16

E =32 + 42

52

=9 + 16

25

=25

25

E = 1

Quatrième exercice

Énoncé :

Donner l’écriture scientifique de F .

F =49 × 103 × 6 × 10−10

14 × 10−2

Correction :

F =49 × 103 × 6 × 10−10

14 × 10−2

=49 × 6

14× 103 × 10−10

10−2

=7 × 7 × 3 × 2

7 × 2× 10−7

10−2

= 21 × 10−5

F = 2,1 × 10−4

10

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

théorème de PYTHAGORE et sa réciproque

I. Théorème de PYTHAGORE

Si un triangle est rectangle alors le carré de la longueur de l’hypoténuse est égal à la sommedes carrés des longueurs des deux autres côtés de ce triangle.

• Le théorème de Pythagore s’applique uniquement dans un triangle rectangle.

• Le théorème de Pythagore permet de calculer la longueur d’un des côtés d’un trianglerectangle (les deux autres longueurs étant connues).

II. La réciproque du théorème de PYTHAGORE

Si dans un triangle, le carré de la longueur du côté le plus grand est égal à la somme des carrésdes longueurs des deux autres côtés de ce triangle alors ce triangle est rectangle et admet pourhypoténuse le plus grand des côtés du triangle.

• La réciproque du théorème de Pythagore permet de démontrer qu’un triangle est rectangle(les longueurs des trois côtés du triangle doivent être connues pour utiliser laréciproque du théorème de Pythagore).

Exercices

Premier exercice

Énoncé :Considérons un triangle MNP rectangle en P tel que :MN = 11 cm et MP = 9 cm.

Calculer la longueur (exacte) NP .

Correction :Dessin (qui n’est pas en grandeur réelle)

P

9 cm

M

11 cm

N

11

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

Le triangle MNP est rectangle en P , nous pouvons donc appliquer le théorème de PYTHA-GORE dans ce triangle. Nous pouvons écrire :

MN2 = MP 2 + NP 2 et donc 112 = 92 + NP 2

Ainsi,NP 2 = 121 − 81 = 40

Et, doncNP =

√40

Conclusion : La longueur (exacte) de NP est√

40 cm.

Deuxième exercice

Énoncé : Considérons un triangle JLF tel que :JL = 4 cm ; LF = 9,6 cm et JF = 10,4cm.

Prouver que le triangle JLF est rectangle en L.

Correction :JF 2 = 10,42 = 108,16

JL2 + LF 2 = 42 + 9,62 = 108,16

donc JF 2 = JL2 + LF 2

D’après la réciproque du théorème de Pythagore, on peut dire que le triangle JLF estrectangle et admet pour hypoténuse le segment [JF ].

Conclusion : le triangle JLF est rectangle en L.

Troisième exercice : extrait du sujet du DNB juin 2009 (légèrement modifié)

Énoncé : Considérons un triangle ABC tel que AB = 16 cm ; AC = 14 cm et BC = 8cm.

Est-ce que le triangle ABC est rectangle ?

Correction :

Calculons séparement AB2 et AC2 + BC2

AB2 = 162 = 256 et AC2 + BC2 = 142 + 82 = 260.

Comme 256 6= 260 alors AB2 6= AC2 + BC2

En conclusion, nous pouvons dire que le triangle ABC n’est pas rectangle en C.

12

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

RACINE CARRÉEI. Racine carrée d’un nombre positif

Définition :

Soit a un nombre positif.

On appelle racine carrée du nombre a le seul nombre positif dont le carré est a. On note cenombre

√a.

(a peut être nul. En effet, si a = 0 alors√

a =√

0 = 0).

Z Si√

a existe, cette écriture comporte trois informations :

a ≥ 0

√a ≥ 0

(√

a)2 = a ou√

a ×√a = a

II. Propriétés

Propriété 1 : Pour tout nombre positif a,√

a2 = a

� Exemples :

√4 =

√22 = 2

√64 =

√82 = 8

√121 =

√112 = 11

√400 =

√202 = 20

Propriété 2 : Pour tous nombres positifs a et b,√

a × b =√

a ×√

b

� Exemples :

√72 =

√36 × 2 =

√36 ×

√2 =

√62 ×

√2 = 6 ×

√2 = 6

√2

(on veut le nombre entier le plus petit "sous" la racine carrée).

√48 =

√16 × 3 =

√16 ×

√3 =

√42 ×

√2 = 4 ×

√3 = 4

√3

Propriété 3 : Pour tous nombres positifs a et b avec b 6= 0,

a

b=

√a√b

� Exemples :

D’après la propriété 3, on peut écrire :√

25

121=

√25√121

13

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

Or√

25 =√

52 = 5 et√

121 =√

112 = 11.

On a donc :√

25

121=

5

11

AttentionPour tous nombres positifs a et b,

√a + b 6=

√a +

√b et

√a − b 6=

√a −

√b

Exemple :√64 + 36 =

√100 =

√102 = 10

et√64 +

√36 =

√82 +

√62 = 8 + 6 = 14

Donc, √64 + 36 6=

√64 +

√36

III. L’équation x2 = a où a est un nombre quelconque

• Premier cas : si a est un nombre négatif et différent de 0 (a < 0)

Dans ce cas, l’équation x2 = a n’a pas de solution.

• Deuxième cas : si a est égal à 0 (a = 0)Dans ce cas, l’équation x2 = a a une seule solution : le nombre 0.

• Troisième cas : si a est un nombre positif et différent de 0 (a > 0)

Dans ce cas, l’équation x2 = a a deux solutions : −√a et

√a

� Exemple :

1. Résoudre l’équation x2 = 10

Comme 10 est un nombre strictement positif, alors l’équation x2 = 10 a deux solutions quisont −

√10 et

√10

14

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

ExercicesPremier exercice

Énoncé :

C =√

18 ×√

6 D = 8√

12 + 6√

3 −√

300

Écrire C et D sous la forme a√

3 où a est un entier.

Correction :

Pour C :

C =√

18 × 6 =√

3 × 6 × 6 =√

36 × 3 =√

36 ×√

3 =√

62 ×√

3 = 6 ×√

3 = 6√

3

Pour D :

√12 =

√4 × 3 =

√4 ×

√3 =

√22 ×

√3 = 2 ×

√3 = 2

√3

√300 =

√100 × 3 =

√100 ×

√3 =

√102 ×

√3 = 10 ×

√3 = 10

√3

On a :D = 8 × 2

√3 + 6

√3 − 10

√3 = 16

√3 + 6

√3 − 10

√3 = 12

√3

Deuxième exercice

Énoncé :Résoudre l’équation x2 = 75.

Correction :

Comme 75 est strictement positif, cette équation a deux solutions : −√

75 et√

75.

Or,√

75 =√

25 × 3 =√

25 ×√

3 =√

52 ×√

3 = 5 ×√

3 = 5√

3

En conclusion, l’équation x2 = 75 admet deux solutions : −5√

3 et 5√

3.

15

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

EQUATIONS, INEQUATIONS

I. équation

1) Définition

3x2 − 5x + 1 = 6x − 2 est un exemple d’équation d’inconnue x.Résoudre une équation d’inconnue x signifie déterminer pour quelle(s) valeur(s) de x l’égalitéest vraie.

2) Techniques de résolution d’une équation

a)Règle d’addition

On peut ajouter ou retrancher un même nombre aux deux membres d’une équation.Cette propriété permet de résoudre des équations du type : x + a = b

b) Règle de multiplication

On peut multiplier ou diviser les deux membres d’une équation par un même nombre non nul.Cette propriété permet de résoudre les équations du type : a × x = b.

Dans les autres types d’équations, on se ramène à un des deux types précédents en utilisantles règles ci-dessus (les termes variables d’un côté et les termes constants de l’autre).

3) Equation produit

Dire qu’un produit est nul revient à dire qu’un de ses facteurs est nul, autrement dit :si A × B = 0, alors A = 0 ou B = 0 et si A = 0 ou B = 0, alors A × B = 0

II. Inéquation

1) Définition

Résoudre une inéquation, c’est chercher toutes les valeurs d’un nombre inconnu qui vérifientl’inégalité proposée. Ces valeurs sont appelées solutions de l’inéquation.

2) Propriétés

Soit a,b et c des nombres relatifs.Si a ≤ b alors a + c ≤ b + c et a − c ≤ b − c

Soit a,b et c des nombres relatifs.Si c > 0 et a ≤ b alors a × c ≤ b × c et a

c≤ b

c

Si c < 0 et a ≤ b alors a × c ≥ b × c et ac≥ b

c

16

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

ExercicesPremier exercice

Énoncé :

Est-ce que le nombre 10 est solution de l’équation x − 4 = −2x + 15 ? Justifier.

Correction :

Si x = 10 alors x − 4 = 10 − 4 = 6

Si x = 10 alors −2x + 15 = (−2) × 10 + 15 = −20 + 15 = −5

Comme 6 est différent de (−5) alors 10 n’est pas solution de l’équation x − 4 = −2x + 15.

Deuxième exercice

Énoncé :

Résoudre les équations et inéquations suivantes :

Correction :

a) 11z − 6 = 3z + 7 b) −7w + 3 = 3w + 111z − 6 − 3z = 3z + 7 − 3z −7w + 3 − 3w = 3w + 1 − 3w

8z − 6 + 6 = 7 + 6 −10w + 3 − 3 = 1 − 38z = 13 −10w = −28z

8= 13

8

−10w

−10= −2

−10

z = 13

8w = 1

5

L’équation a une unique solution : 13

8L’équation a une unique solution : 1

5

c) (−x − 5)(3x − 12) = 0 d) (3x − 2)(2x + 7) = 0Un produit est nul si Un produit est nul siau moins un de ses facteurs l’est. au moins un de ses facteurs l’est.Résoudre cette équation revient à résoudre : Résoudre cette équation revient à résoudre :−x − 5 = 0 ou 3x − 12 = 0 3x − 2 = 0 ou 2x + 7 = 0−x = 5 ou 3x = 12 3x = 2 ou 2x = −7x = −5 ou x = 4 x = 2

3ou x = −7

2

L’équation a deux solutions : -5 et 4. Les solutions de l’équation sont : 2

3et −7

2.

e) −x + 5 ≤ 2x − 1 f) 8x + 12 > 10x + 2−x + 5 − 5 ≤ 2x − 1 − 5 8x + 12 − 12 > 10x + 2 − 12−x − 2x ≤ 2x − 6 − 2x 8x − 10x > 10x − 10 − 10x

−3x ≤ −6 −2x > −10−3x

−3≥ −6

−3

−2x

−2<

−10

−2

x ≥ 2 x < 5Les solutions de cette inéquation sont Les solutions de cette inéquation sontles nombres supérieurs ou égaux à 2 les nombres inférieurs à 5

Représentation graphique des solutions Représentation graphique des solutionsde cette inéquation sur une droite graduée : de cette inéquation sur une droite graduée :

17

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

ANGLE AU CENTRE, ANGLE INSCRIT

I. Définitions

• Un angle inscrit dans un cercle est un angle dont le sommet est sur le cercle et les côtéssont deux cordes de ce cercle.

• Un angle au centre est un angle dont le sommet est le centre d’un cercle et les côtéssont deux rayons de ce cercle.

O est le centre des cercles ci-dessous

O

A

B

L’angle AOB est un angle au centre, cet

angle intercepte l’arc de cercle⌢

AB.

O

A

B

C

b

L’angle ACB est un angle inscrit dans le

cercle, cet angle intercepte l’arc de cercle⌢

AB.

II. Propriétés

Propriété 1 :

Dans un cercle, un angle inscrit mesure la moitié de l’angle au centre si ces deux angles inter-ceptent le même arc de cercle.

Propriété 2 :

Si deux angles inscrits dans un cercle interceptent le même arc de cercle alors ces deux anglesont la même mesure.

⋆ Remarque : Tout angle inscrit interceptant un demi-cercle est un angle droit.

18

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

ExercicesExercice

Énoncé :

Les points R, S, T et V sont sur le cercle C de centre O avec RV S = 35

Calculer les mesures des angles ROS et RTS

Correction :

Dans le cercle C de centre O :

• l’angle RV S est un angle inscrit qui intercepte l’arc de cercle⌢

RS

• l’angle ROS est un angle au centre qui intercepte le même arc de cercle⌢

RS

Donc, ROS = 2 × RV S = 2 × 35 = 70

L’angle ROS mesure 70

⋆ Calcul de la mesure de l’angle RTS

Dans le cercle C de centre O :

les angles RTS et RV S sont deux angles inscrits qui interceptent le même arc de cercle⌢

RS.

Donc, RV S = RTS

L’angle RTS mesure 35

19

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

LES PROBABILITESI. Vocabulaire

1) Définition : expérience aléatoire, événement

Un phénomème dont on ne peut pas prévoir de façon certaine le résultat s’appelle uneexpérience aléatoire.

• Chacun des résultats possibles lors d’une expérience aléatoire s’appelle une issue.

• Un événement réalisé par une seule issue est un événement élémentaire.

� Exemples :

⋆ Exemple 1 :Considérons un dé à 6 faces numérotées de 1 à 6 (dé non truqué). Quelqu’un lance ce dé. Il

y a 6 issues possibles à ce lancer :

1, 2, 3, 4, 5 ou6

⋆ Exemple 2 :Considérons une pièce de monnaie. Quelqu’un lance cette pièce de monnaie. Il y a 2 issues

possibles à ce lancer :

Pile ou Face

(on ne prendra pas en compte l’issue suivante : « la pièce tombe sur la tranche »)

� Exemples d’événements :

Si on reprend l’exemple du dé, on peut définir de nombreux événements. Donnons desexemples.

• A l’événement :« obtenir un nombre pair ». Cet événement est l’ensemble des issuessuivantes : « obtenir un 2 » ou « obtenir un 4 » ou « obtenir un 6 ».

•B l’événement :« obtenir un nombre multiple de 3 ». Cet événement est l’ensemble desissues suivantes : « obtenir un 3 » ou « obtenir un 6 ».

On peut définir de nombreux autres événements.

2) Événements particuliers :

⋆ Événement certain : événement qui se produit à chaque fois, qui a 100% de chancesde se produire.

⋆ Événement impossible : événement qui ne se produit jamais, qui n’a aucune chancede se produire.

Exemple : Lors d’un lancer de dé, l’événement : « obtenir un 9 » est impossible.

⋆ Événement « A et B » : c’est l’événement qui se réalise lorsque les événements A etB se réalisent tous les deux simultanément.

20

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

⋆ Événement « A ou B » : c’est l’événement qui se réalise lorsque l’un au moins desdeux événements A et B (ou les deux) se réalise.

⋆ Événements incompatibles : Deux événements A et B sont incompatibles si cesdeux événements ne peuvent pas se produire en même temps.

⋆ Événement contraire :Si A est un événement, l’événement contraire de A est l’événement qui se réalise lorsque A

ne se réalise pas. On note cet événement contraire : « non A » ou A

Remarques importantes :

• Deux événements contraires sont incompatibles.

• L’événement « A et A » est l’événement impossible.

• L’événement « A ou A » est l’événement certain.

II. Probabilité

Lorsqu’on répète un grand nombre de fois une expérience aléatoire, la fréquence de réalisa-tion d’un événement se rapproche d’une valeur particulière : la probabilité de cet événementélémentaire.

III. Propriétés des probabilités

� Propriété 1 : La probabilité d’un événement est un nombre compris entre 0 et 1.

� Propriété 2 : La somme des probabilités des événements élémentaires est égale à 1.

� Propriété 3 : Quand les résultats d’une expérience aléatoire ont la même probabilité alorsla probabilité d’un événement est égale au quotient :

nombre de résultats favorables à l’événementnombre de résultats possibles

� Propriété 4 : Lorsque deux événements A et B sont incompatibles alors :

p(A ou B) = p(A) + p(B)

� Propriété 5 : La somme des probabilités d’un événement A et de son contraire est égaleà 1.

p(A) + p(A) = 1

IV. Moyens de représentation

On peut représenter les différentes issues d’une expérience à l’aide d’un arbre.

21

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

Quand on fait un arbre, on écrit sur chaque branche la probabilité de l’événement, on obtientun arbre pondéré.

⋆ Exemple :

Une urne contient 20 boules : 8 boules blanches, 2 boules vertes et 10 boules jaunes.

Quelqu’un tire une boule de cette urne.

Considérons les événements suivants :

• B est l’événement : « tirer une boule blanche »• V est l’événement : « tirer une boule verte »• J est l’événement : « tirer une boule jaune »

p(B) =8

20= 0,4 p(V ) =

2

20= 0,1 p(J) =

10

20= 0,5

L’arbre est le suivant :

b

b

b

b

Blanc

Vert

Jaune

L’arbre pondéré est le suivant :

b

b

b

b

Blanc

Vert

Jaune

0,40,1

0,5

La somme des probabilités des différentes branches est égale à 1, en effet :

0,4 + 0,1 + 0,5 = 1

22

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

V. Expérience à deux épreuves successives

Une expérience peut être constituée de deux épreuves successives.

⋆ Exemple :

Dans un premier temps, on tire un jeton dans un premier sac et on note sa couleur. Dansun second temps, on tire un jeton dans le deuxième sac et on note sa couleur.

Le premier sac contient 10 jetons : 3 jetons vert et 7 jetons rouge.

Le deuxième sac contient 15 jetons : 3 jetons blanc et 12 jetons noir.

• Dans le premier sac, il y a 10 jetons. On peut écrire : p(V ) =3

10= 0,3 et p(R) =

7

10= 0,7

• Dans le deuxième sac, il y a 15 jetons. On peut écrire : p(B) =3

15= 0,2 et p(N) =

12

15=

0,8.

On peut construire un arbre.

V0,3

B0,2

N0,8

R0,7

B0,2

N0,8

Sur un arbre des résultats d’une expérience aléatoire à deux épreuves, une succession de deuxbranches est appelée un chemin.

Propriété

Dans un arbre, la probabilité d’une issue auquel conduit un chemin est égale au produit desprobabilités le long du chemin.

En reprenant l’exemple précédent, on a : p(V,B) = 0,3 × 0,2 = 0,06

23

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

ExercicesPremier exercice

Énoncé :

Un sac contient 40 jetons numérotées de 1 à 40.

On tire au hasard l’un de ces jetons.

On considère les événements suivants :

A : « on obtient un numéro pair »

B : « on obtient un multiple de 3 »

C : « on obtient un numéro supérieur ou égal à 15 »

Déterminer p (A), p (B) et p (C).

Correction :

Calcul de p (A)

Il y a 20 nombres pairs parmi ces 40 nombres. On a : p (A) =20

40= 0,5.

Calcul de p (B)

Il y a 13 multiples de 3 parmi ces 40 nombres. On a : p (B) =13

40.

Calcul de p (C)

Il y a 26 numéros supérieurs ou égaux à 15 parmi ces 40 nombres.

On a : p (C) =26

40=

13

20.

Deuxième exercice

Énoncé :

Une urne contient 20 boules : 4 boules bleues, 12 boules rouges et 4 boules jaunes. (cesboules sont unicolores)

Une expérience consiste à tirer une boule au hasard et à examiner sa couleur. On note :

R l’événement : « la boule obtenue est rouge » et J l’événement : « la boule obtenue estjaune ».

1. Donner les probabilités de ces deux événements (donner le résultat sous la forme d’unefraction irréductible).

2. Les événements R et J sont-ils incompatibles ? Pourquoi ?

3. Calculer la probabilité p (R ou J).

24

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

Correction :

1. Il y a 12 boules rouges parmi les 20 boules qui sont dans cette urne. On a :

p (R) =12

20=

3 × 4

5 × 4=

3

5

Il y a 4 boules jaunes parmi les 20 boules qui sont dans cette urne. On a :

p (J) =4

20=

1 × 4

5 × 4=

1

5

2. Ces deux événements R et J sont incompatibles car on ne peut pas tirer à la fois uneboule rouge et une boule jaune (les boules sont unicolores).

3. Comme ces deux événements R et J sont incompatibles, nous pouvons écrire :

p (R ouJ) = p (R) + p (J) =3

5+

1

5=

4

5

25

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

rappels sur la PROPORTIONNALITÉ

1 Situation de proportionnalité.

On dit que deux grandeurs sont proportionnelles lorsqu’on peut calculer l’une à partir de l’autreen multipliant toujours par le même nombre.Ce nombre est appelé le coefficient de proportionnalité.

Exemples :– Dans une station service, le prix à payer pour l’achat de carburant s’obtient en multipliant

la quantité d’essence achetée (en litre) par le prix d’un litre. Donc le prix à payer estproportionnel à la quantité d’essence et le coefficient de proportionnalité est le prix d’unlitre d’essence.

– Le périmètre d’un disque s’obtient en multipliant le diamètre du disque par π. Donc lepérimètre d’un disque est proportionnel à son diamètre et le coefficient de proportionnalitéest π.

Contre-exemple :A 20 ans un homme pèse 70 kg. Combien pèsera-t-il à 60 ans ?Ce n’est pas une situation de proportionnalité. En effet, la masse d’une personne ne dépendpas de son âge. Cette personne peut grossir, maigrir ou garder sa masse pendant les prochaines40 années. (il en est de même pour la taille d’une personne).

2 Tableau de proportionnalité.

Un tableau est un tableau de proportionnalité lorsqu’on obtient les nombres de la deuxième ligneen multipliant ceux de la première par un même nombre appelé coefficient de proportionnalité.

Exemples :

1.Quantité d’essence (en L) 20 40 120Prix (en euros) 25 50 150

En divisant les nombres de la deuxième ligne par ceux de la première ligne on trouve lemême résultat.En effet,

25

20=

50

40=

150

120= 1,25

C’est donc un tableau de proportionnalité et le coefficient de proportionnalité est 1,25.

2.Nombre de tours de manège 2 4 7Prix en euros 1 2 2,80

En divisant les nombres de la deuxième ligne par ceux de la première on n’obtient pas lemême résultat.

26

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

En effet, 1

2= 2

4= 0,50 et 2,8

7= 0,40

Ce n’est pas un tableau de proportionnalité.

3 La quatrième proportionnelle.

Dans une situation de proportionnalité, si l’on connait trois valeurs sur quatre du tableau, alorsil est possible de calculer la quatrième valeur. On dit qu’on calcule la quatrième proportionnelle.Pour cela on utilise le produit en croix.

Exemples

100 x8 32

x = 32×100

8= 400

4 1016 y

y = 16×10

4= 40

18 72z 8

z = 8×18

72= 2

4 Représentations graphiques.

Si deux suites de nombres sont proportionnelles alors elles sont représentées par des pointsalignés avec l’origine du repère.Réciproquement, si deux suites de nombres sont représentées par des points alignés avec l’originedu repère alors elles sont proportionnelles.Autrement dit, la représentation graphique d’une situation de proportionnalité est une droitepassant par l’origine et réciproquement.

. Exemple 1 : proportionnalité

Grandeur a 2 3 6Grandeur b 1 1,5 3

Ce tableau est un tableau de proportionnalité et le coefficient de proportionnalité est 0,5.Dans ce cas, on a trois points alignés avec l’origine :

27

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

Exemple 2 : non proportionnalité

Grandeur a 3 4 6Grandeur b 2 3 3

Ce tableau n’est pas un tableau de proportionnalité. Dans ce cas, on a des points nonalignés avec l’origine. En effet, en plaçant dans un repère les points M , N et P de coordonnéesrespectives M(3; 2), N(4; 3) et P (6; 3), on s’aperçoit que ces trois points ne sont pas alignésavec l’origine du repère. (on vous laisse le soin de faire un graphique pour visualiser la situation)

28

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

théorème de THALÈS et sa réciproque

I. Propriété de Thalès

Etant données deux droites (d) et (d′) sécantes en A,deux points B et M de (d), distincts de A,deux points C et N de (d′), distincts de A,si les droites (BC) et (MN) sont parallèles alors : AM

AB= AN

AC= MN

BC

Il y a trois configurations possibles :

A B

C

N

M (d)

A M

N

C

B (d)

N M

B C

A

29

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

Remarques :

1. La propriété de Thalès permet de calculer une longueur quand on en connaît trois autres.

2. La propriété de Thalès permet de démontrer que des droites ne sont pas parallèles : dansles conditions de la propriété de Thalès, si AM

AB6= AN

ACalors les droites (BC) et (MN) ne

sont pas parallèles.

II. Réciproque du théorème de Thalès

Etant données deux droites (d) et (d′) sécantes en A,deux points B et M de (d), distincts de A,deux points C et N de (d′), distincts de A,si AM

AB= AN

ACet si les points A, B, M sont dans le même ordre que les points A, C,

N , alors les droites (BC) et (MN) sont parallèles.

ExercicesPremier exercice

Énoncé :

On considère la figure suivante avec (ST ) ‖ (UV ).Calculer KV et ST .

S T

V U

K

TK = 3 cm ; SK = 5 cm ; KU = 9 cm et UV = 6,3 cm.

Correction :

Les droites (TV ) et (SU) sont sécantes en K.Puisque les droites (ST ) et (UV ) sont parallèles, d’après le théorème de Thalès, on a :KT

KV=

KS

KU=

ST

UVd’où en remplaçant avec les données de la figure :

30

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

3

KV=

5

9=

ST

6,3

En utilisant le produit en croix, on a : KV =3 × 9

5= 5,4 et ST =

5 × 6,3

9= 3,5.

Deuxième exercice

Énoncé :

Avec les données de la figure suivante - figure qui n’est pas en vraie grandeur - : OI = 6 cm ;IP = 10,5 cm ; IL = 4 cm et IU = 7 cm, démontrer que (OL) est parallèle à (UP ).

bO

b

L

bU

bP

b

I

Correction :

– Les droites (OP ) et (LU) sont sécantes en I.– Les points O, I et P sont alignés dans le même ordre que les points L, I et U .– d’autre part, on a :

IP

IO=

10,5

6=

105

60=

7

4

IU

IL=

7

4

doncIP

IO=

IU

IL

On peut appliquer la réciproque du théorème de Thalès et on déduit que les droites (OL) et(UP ) sont parallèles.

31

Mathématiques, 2013− 2014 Collège Montgaillard, 28 novembre 2013

Troisième exercice :

(Extrait du problème du collège Montgaillard, décembre 2007 : légèrement mo-difié)

Énoncé :

RU = 12 cm ; UN = 5 cm

bR

b

U

b

Nb

F

bE

E est un point du segment [RU ] tel que UE = 5,3 cm et F est un point du segment [UN ]tel que NF = 2,8 cm.

Les droites (EF ) et (RN) sont-elles parallèles ?

Correction :

Les droites (RU) et (UN) sont sécantes en U .

UE

UR=

5,3

12=

53

120

UF

UN=

UN − NF

UN=

5 − 2,8

5=

2,2

5=

52,8

120

doncUE

UR6= UF

UN

Par conséquent, les droites (EF ) et (RN) ne sont pas parallèles.

32