Possible measurement of electron EDM in atoms with spatially alternating electric field

24
Possible measurement of electron EDM in atoms with spatially alternating electric field T. Haseyama RIKEN, Japan ( The Institute of Physical and Chemical Research ) • Overview of the planned experiment • Recent development on co-magnetometer beam

description

Possible measurement of electron EDM in atoms with spatially alternating electric field. Overview of the planned experiment Recent development on co-magnetometer beam. T. Haseyama RIKEN, Japan ( The Institute of Physical and Chemical Research ). upper limit at present - PowerPoint PPT Presentation

Transcript of Possible measurement of electron EDM in atoms with spatially alternating electric field

Possible measurement of electron EDM in atoms

with spatially alternating electric field

T. Haseyama RIKEN, Japan

( The Institute of Physical and Chemical Research )

• Overview of the planned experiment• Recent development on co-magnetometer beam

electron EDM

PRA50,2960(1994)

upper limit at present

  |de| < 1.6×10-27 ecm Berkeley group 205Tl ground state 6 2 P1/2 ( F=1)

Tl: enhancement factor –585   (Z=81)PRL88,071805(2002)

Electric Dipole Moment

P-odd T-odd

Atomic EDM

PRA50,2960(1994)

e EDM Enhancement factor: dA /de ~ O (Z3α2)        inner core region : relativistic motion                                      a strong mixing between opposite-parity states

2 types of atomic EDM    paramagnetic atom ← electron EDM  diamagnetic atom ← nuclear Schiff moment ← quark chromo-EDM and θQCD

Direction of Electric Field in beam experiment

205Tl-exp. : E ⊥ v requirement: counter-propagating beams

Motional magnetism

v×E rotation

E // v preferable

voltage accumulation

E // v difficult to apply

Accumulation of EDM spin precessionin spatially alternating electric field

Accumulative EDM precessions in

Canceling Voltages

l o n g i t u d i n a l v i e w

F

π - f l i p

E D Mp r e c e s s i o n

F

v

E Bπ - f l i p

A t o m

H V

G N D

Spin rotates in each electrode by 180degrees with static magnetic field.

Longitudinal E-field

exact matching

mismatching

alternatingπ-flips

one-wayπ-flips

BADGOOD

v

EBπ

Small velocity-dependence of the sensitivityto the EDM spin precession

Rotation angle is velocity-dependent.EDM spin precession accumulates when the directions of the magnetic field are also alternating.

elapsed time(relative)

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.9 0.95 1 1.05 1.1

B_add 1radB_add 0.1radB_add 0.01radB_add 0.001rad

y-component of the polarization

Elapsed time factor

0

0.2

0.4

0.6

0.8

1

1.2

0.9 0.95 1 1.05 1.1

deriv. B_add 1radderiv. B_add 0.1radderiv. B_add 0.01radderiv. B_add 0.001rad

derivative to the EDM precession

Elapesed time factor

Sideward component

Derivative to the EDM precession

Advantages to use 220Fr

F

μd

BE AA

ω

The heaviest alkali atom, Z=87

Large enhancement from e EDM

dFr /de ~ 1×103

F=1/2 hyperfine structure valence electron 7s1/2 + nuclear spin I=1

spin precession

Sufficiently long lifetime               τ=39.2 sec (T1/2 =27.2sec)

RIBF(RIKEN) production rate > 5×106 /sec

Neutralization areaDipole Magnet, RF cavity

RI

Electrodes Glass nozzle

Stopping chamber

Detector(QMS)

Yttrium

Spin Selection (1st)Hexapole Magnet

Spin Selection (2nd)Quadrupole Magnet

RIABR ( Radio Isotope Atomic Beam Resonance )

for other experiments requiringhigh nuclear polarization

production: slow neutral RI beam

applicable to Francium

Atomic excitation

m F

7 s 1 / 2

7 p 1 / 2

D 1 l i n e= 8 1 7 n mλ

F = 1 / 2

F = 3 / 2

F = 3 / 2

F = 1 / 2

2 2 0 F r

- 1 / 2+ 1 / 2

- 1 / 2+ 1 / 2+ 3 / 2

- 3 / 2

- 1 / 2+ 1 / 2

- 1 / 2+ 1 / 2+ 3 / 2

- 3 / 2

unpo

l.

σ+

- 3 5 0 0 0

- 3 0 0 0 0

- 2 5 0 0 0

- 2 0 0 0 0

- 1 5 0 0 0

- 1 0 0 0 0

- 5 0 0 0

0

7 s

8 s

9 s

1 0 s

7 p 1 / 2

8 p 1 / 2

9 p 1 / 2

7 p 3 / 2

8 p 3 / 2

9 p 3 / 2

6 d 3 / 2

7 d 3 / 2

8 d 3 / 2

6 d 5 / 2

7 d 5 / 2

8 d 5 / 2

5 f

6 f

C a lc u la te d b y D z u b a P h y s .L e t t .A 9 5 ,2 3 0 (1 9 8 3 )e t a l .

F r a n c i u m

Ene

rgy

leve

l[cm

]-1

i o n i z a t i o n e n e r g y 4 . 0 7 e V( 2 n d s m a l l e s t o f a l l t h e a t o m s )

Francium D1 line: transition between 7s1/2 and 7p1/2 states (λ= 817nm)

Rn-like closed shell + 1 valence electron

Optical Pumping

mF = +1/2 : stable  mF = -1/2 : unstable →   fluorescence

7s1/2 F=1/2 states

D1: 817nm

D2: 718nm

D2 line: used for atomic cooling transition between 7s1/2 and 7p3/2 states (λ= 718nm)

Slow Alkali Beams

saturation intensity   (Fr D2-line)    

22

30

0 mW/cm 67.2 π12

ω

cI

Na

PRA55,605(1997)

Na

to reduce transverse momentum

2 -D Optical Molasses Doppler Limit     8.3cm/s

or sub-Doppler cooling as required

Longer time for EDM precession

Zeeman technique

6Li co-magnetometerStable alkali with nuclear spin I=1

    thermal atomic beam: available

similar configuration of angular momentum

Atomic magnetic moment: close to 220Fr

    relative difference: O(10-3)

Negligible EDM dLi /dFr ~ 4×10-6

trajectory combination onto 220Fr-path

thermal Li-beam source

Ext.Cav. Diode Laser systemsystem

Planned setup

Deceleration of 6Li beam with Zeeman slower method

thermal 6Li atomic beamlow-velocity component: too tiny a portion….

7.0E-4

0.0E+0

1.0E-4

2.0E-4

3.0E-4

4.0E-4

5.0E-4

6.0E-4

30000 500 1000 1500 2000 2500

Velocity Distibution

300℃400℃500℃

Velocity[m/s]Deceleration is Required!

Head-on collisions with photons

a deceleration with a single laser

position

resonance with applied magnetic field

atoms entering with high velocity

atoms entering with low velocity

Basic concept of the deceleration

cancellation

Doppler shift ⇔ Zeeman shift

Momentum transfer with photon

cycling transition for deceleration D2 line (2s1/2→ 2p3/2) 671.0nm (446.8THz, 1.848eV)

(F, F’) = (3/2, 5/2) circular polarizationAlthough hyperfine transitions, (F, F’) = (3/2, * ) are irresolvable,circular polarization allows only (3/2, 5/2) for successive transitions.

Momentum : 1.87×104eV/cDoppler shift : 1.49GHzCompensating field : 0.1065T (for v=1000m/s)

successive scatterings of ~104 photons

Radiative lifetime (2p3/2) 26.9ns

1 - p h o t o n m o m e n t u m1 . 8 4 8 e V / c0 . 0 9 9 m / s

l a s e rb e a m

F l u o r e s c e n c e( r a n d o m d i r e c t i o n )

F l u o r e s c e n tr e c o i l

L a s e r a b s o r p t i o n

r e c o i l o ni n d u c e d e m i s s i o n

6 L i a t o m

A t o m i cm o m e n t u m

6Li Deceleration RateLight absorption and scattering rate

20

0

]/)(2[1

2/

D

p s

s

22

30

0 mW/cm 56.2 π12

ω ,

limit) capture 3.97m/s (equiv. MHz92.5π2

shiftDoppler :

included)shift (Zeeman

resonance from detuninglaser :

cIIIs ss

D

01 FWHM sΓ power-broadened line width

0

1 107

2 107

3 107

4 107

480 490 500 510 520

sat. fact 1sat. fact 3sat. fact 10sat. fact 30

Ph

oton

Sca

tter

ing

Rat

e[s-1

]velocity [m/s]

Bz = 5.33 x 10-2 T

260max sm1084.1

2

Mca

maximum deceleration (s0→∞)

field, gradient and laser power 1

22

0

2

0

0

0max 1/mT 10085.2

1

dzdB

Bs

cs

sa

dz

dBB

B

This condition should NOT be satisfied at the exit.

220Fr 7.57MHz, 5.44m/s2.67mW/cm2

220Fr 6.01×104m/s2

220Fr 5.952×10-4 T2 / m

magnet

Profile coil: field gradientBias coil: uniform shift Extraction coils: sudden drop

6Li beamentrance

6Li beamexit

inhomogeneoussolenoids

MAX 0.12T

MAX 0.01T MAX 0.02T

Example of parameter setting

929m/s→ 200m/s 6 L i a t o m L a s e r

additional slowering as required

Summary

Electron EDM measurment w/ spatially alternating electric fieldLongitudinal electric field to reduce v×E systematics Spatially alternating longitudinal electric field avoids potential accumulation. π-flip at each boundary accumulationEffect of velocity spread is minimized by alternating π-flips.Fr atomic beam, RIABR, Zeeman slowering, …Deceleration of 6Li co-magnetometer beam design and construction

Francium the heaviest alkali atomaccelerator prduction requiredLargest enehancement ( ~1000 )

PRA50,2960(1994)

Alkali•Low excitation enerygy•Small saturation intensity ~ 3mW/cm2

•Polarization or atomic cooling

220Fr 7s1/2 (F=1/2)

Maximum EDM spin rotation224,226Fr: same spin, but small production rates

6Li : spin analogue negligible EDM

Electron EDM (Electric Dipole Momemnt)

positronelectron

電荷分布の偏り

finite EDM P-odd T-odd interaction

“Spin Echo”-like Method tough against velocity mismatching

exact matching

mismatching

alternatingπ-flips

one-wayπ-flips

BADGOOD

Magnitude of the Spin-Flip field

Lande-factor

1,0,

3

2

)1(2

)1()1()1(

2)1(2

)1()1()1(1

21

ILFSJ

FF

IIJJFFgg

JJ

LLSSJJg

JF

J

MHz/gauss87.12

32

F

B

Rotation frequency in magnetic field

passage time in spin-flip field

s10250m/s

m10

v4-

2

atom

flipL

Magnitude of the Spin-Flip field

gauss1036.1s)102(MHz/gauss)87.1(2

1 3-4-

1eV⇔241.80THz10-19eV ⇔24μHz

Thallium figure

PRL88,071805(2002)