Politechnika Wrocławska, 18 XI 2015

70
Politechnika Wroclawska, 18 XI 2015 Strong non-local effects due to the crossed Andreev scattering Tadeusz Doma ´ nski Marie Curie-Sklodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures

Transcript of Politechnika Wrocławska, 18 XI 2015

Page 1: Politechnika Wrocławska, 18 XI 2015

Politechnika Wrocławska, 18 XI 2015

Strong non-local effects due to

the crossed Andreev scattering

Tadeusz Doma nskiMarie Curie-Skłodowska University,

Lublin, Poland

http://kft.umcs.lublin.pl/doman/lectures

Page 2: Politechnika Wrocławska, 18 XI 2015

Outline

Page 3: Politechnika Wrocławska, 18 XI 2015

Outline

A few questions:

Page 4: Politechnika Wrocławska, 18 XI 2015

Outline

A few questions:

⇒ how can we obtain nano-superconductivity

/ proximity effect /

Page 5: Politechnika Wrocławska, 18 XI 2015

Outline

A few questions:

⇒ how can we obtain nano-superconductivity

/ proximity effect /

⇒ how can we observe nano-superconductivity

/ spectroscopic signatures /

Page 6: Politechnika Wrocławska, 18 XI 2015

Outline

A few questions:

⇒ how can we obtain nano-superconductivity

/ proximity effect /

⇒ how can we observe nano-superconductivity

/ spectroscopic signatures /

⇒ where can we use nano-superconductors

/ practical aspects /

Page 7: Politechnika Wrocławska, 18 XI 2015

1. Nano-superconductivity:

⇒ how to obtain it ?

Page 8: Politechnika Wrocławska, 18 XI 2015

Superconducting state – of bulk materials

Page 9: Politechnika Wrocławska, 18 XI 2015

Superconducting state – of bulk materials

⋆ ideal d.c. conductance

Page 10: Politechnika Wrocławska, 18 XI 2015

Superconducting state – of bulk materials

⋆ ideal d.c. conductance

⋆ ideal diamagnetism /perfect screening of the d.c. magnetic field/

T > Tc T < Tc

Page 11: Politechnika Wrocławska, 18 XI 2015

Superconducting state – of bulk materials

⇒ ideal d.c. conductance (vanishing resistance)

⇒ ideal diamagnetism (Meissner effect)

are caused by the superfluid electron pairs

ns(T ) ∝ 1/λ2

that move coherently over macroscopic distances.

Page 12: Politechnika Wrocławska, 18 XI 2015

Superconducting state – of bulk materials

The pairing mechanisms originate from:

1. phonon-exchange/ classical superconductors, MgB2, ... /

2. magnon-exchange/ heavy fermion compounds /

3. strong correlations

/ spin exchange2t2

ij

Uin the high Tc superconductors /

.. other exotic processes/ ultracold atoms, nuclei, gluon-quark plasma /

Page 13: Politechnika Wrocławska, 18 XI 2015

Superconducting state – of bulk materials

The pairing mechanisms originate from:

1. phonon-exchange/ classical superconductors, MgB2, ... /

2. magnon-exchange/ heavy fermion compounds /

3. strong correlations

/ spin exchange2t2

ij

Uin the high Tc superconductors /

.. other exotic processes/ ultracold atoms, nuclei, gluon-quark plasma /

Onset of the fermion pairing often goes hand in hand with appe arance

of the superconductivity/superfluidity , but it doesn’t have to be a rule.

Page 14: Politechnika Wrocławska, 18 XI 2015

Proximity effect – induced superconductivity

Page 15: Politechnika Wrocławska, 18 XI 2015

Proximity effect – induced superconductivity

⋆ Any material brought in contact with superconductor

Page 16: Politechnika Wrocławska, 18 XI 2015

Proximity effect – induced superconductivity

⋆ Any material brought in contact with superconductor

absorbs the paired electrons up to distances ∼ ξn.

Page 17: Politechnika Wrocławska, 18 XI 2015

Proximity effect – induced superconductivity

⋆ Any material brought in contact with superconductor

absorbs the paired electrons up to distances ∼ ξn.

⋆ Spatial size L of nanoscopic objects is L ≪ ξn !

Page 18: Politechnika Wrocławska, 18 XI 2015

2. Nano-superconductivity:

⇒ how can we observe it ?

Page 19: Politechnika Wrocławska, 18 XI 2015

Superconductivity in nanosystems – specific issues

Page 20: Politechnika Wrocławska, 18 XI 2015

Superconductivity in nanosystems – specific issues

1. Quantum Size Effect −→ discrete energy spectrum

normal state superconductor

Page 21: Politechnika Wrocławska, 18 XI 2015

Superconductivity in nanosystems – specific issues

1. Quantum Size Effect −→ discrete energy spectrum

normal state superconductor

Anderson criterion: superconductivity only for ∆ > εi+1−εi

Page 22: Politechnika Wrocławska, 18 XI 2015

Superconductivity in nanosystems – specific issues

2. Coulomb blockade (electron pairing vs repulsion)

The odd / even electron number plays the important and qualit ative role !

Page 23: Politechnika Wrocławska, 18 XI 2015

Superconductivity in nanosystems – specific issues

2. Coulomb blockade (electron pairing vs repulsion)

The odd / even electron number plays the important and qualit ative role !

Coulomb potential UC is usually much smaller than ∆, therefore

its influence can be in practice observed only indirectly, via :

|↑〉 ⇐⇒ u |0〉 − v |↑↓〉

( quantum phase transition )

Page 24: Politechnika Wrocławska, 18 XI 2015

Superconductivity in nanosystems – specific issues

2. Coulomb blockade (electron pairing vs repulsion)

The odd / even electron number plays the important and qualit ative role !

Coulomb potential UC is usually much smaller than ∆, therefore

its influence can be in practice observed only indirectly, via :

|↑〉 ⇐⇒ u |0〉 − v |↑↓〉

( quantum phase transition )

Physical consequences:

⇒ inversion of the Josephson current (in S-QD-S junctions)

⇒ activation/blocking of the Kondo effect (in N-QD-S junctions)

Page 25: Politechnika Wrocławska, 18 XI 2015

Superconductivity in nanosystems – specific issues

3. Pairing vs Kondo state (’to screen or not to screen’)

R. Maurand, Ch. Schönenberger, Physics 6, 75 (2013).

Page 26: Politechnika Wrocławska, 18 XI 2015

Superconductivity in nanosystems – specific issues

3. Pairing vs Kondo state (’to screen or not to screen’)

R. Maurand, Ch. Schönenberger, Physics 6, 75 (2013).

⇒ states near the Fermi level are depleted

⇒ electron pairing vs the Kondo state (nontrivial relation)

Page 27: Politechnika Wrocławska, 18 XI 2015

Quantum impurity (dot) in

a superconducting host

Page 28: Politechnika Wrocławska, 18 XI 2015

Microscopic model Anderson-type Hamiltonian

Quantum impurity (dot)

HQD =∑

σ

ǫd d†σ

dσ + U nd↑ nd↓

coupled with a superconductor

H =∑

σ

ǫdd†σdσ + U nd↑ nd↓ + HS

+∑

k,σ

(

Vk d†σckσ + V ∗

kc†kσdσ

)

where

HS =∑

k,σ (εk−µ) c†kσckσ −

k

(

∆c†k↑ c†

k↓+h.c.

)

Page 29: Politechnika Wrocławska, 18 XI 2015

Uncorrelated QD – exactly solvable Ud = 0 case

0.2 0.4 0.6 0.8

1

ω / ΓS

∆ / ΓS

ρd(ω)

εd = 0

-2-1

0 1

2

0

0.2

0.4

0.6

0.8

1

In-gap resonances: Andreev bound states.

J. Bara nski and T. Doma nski, J. Phys.: Condens. Matter 25, 435305 (2013).

Page 30: Politechnika Wrocławska, 18 XI 2015

Subgap states – experimental data

Magnetic field [Tesla]

Differential conductance of nanotubes coupled to vanadium ( S) and gold (N)

/ external magnetic field changes the magnitude of pairing ga p ∆(B) /

Eduardo J.H. Lee, ..., S. De Franceschi, Nature Nanotechnology 9, 79 (2014).

Page 31: Politechnika Wrocławska, 18 XI 2015

Subgap states of multilevel impurities

STMtip

dd

I/

V

Vsubgapstructure

a) b)

a) STM scheme and b) differential conductance for a multilevel

quantum impurity adsorbed on a superconductor surface.

R. Žitko, O. Bodensiek, and T. Pruschke, Phys. Rev. B 83, 054512 (2011).

Page 32: Politechnika Wrocławska, 18 XI 2015

Subgap states of quantum chains – experimental results

Page 33: Politechnika Wrocławska, 18 XI 2015

Subgap states of quantum chains – experimental results

A chain of iron atoms deposited on a surface of superconducting lead

STM measurements provided evidence for:

⇒ Majorana bound states at the edges of a chain.

S. Nadj-Perge, ..., and A. Yazdani, Science 346, 602 (2014).

/ Princeton University, Princeton (NJ), USA /

Page 34: Politechnika Wrocławska, 18 XI 2015

Subgap states of quantum chains – experimental results

InSb nanowire between a metal (gold) and a superconductor (Nb-Ti-N)

dI/dV measured at 70 mK for varying magnetic field B indicated:

⇒ zero-bias enhancement due to Majorana state

V. Mourik, ..., and L.P. Kouwenhoven, Science 336, 1003 (2012).

/ Kavli Institute of Nanoscience, Delft Univ., Netherlands /

Page 35: Politechnika Wrocławska, 18 XI 2015

3. Nano-superconductivity:

⇒ some practical aspects

Page 36: Politechnika Wrocławska, 18 XI 2015

Andreev reflections – possible applications

Page 37: Politechnika Wrocławska, 18 XI 2015

Andreev reflections – possible applications

Schematic illustration of the Andreev-type scattering

Page 38: Politechnika Wrocławska, 18 XI 2015

Andreev reflections – possible applications

Andreev-type scattering can be also considered in more comp lex junctions

P. Cadden-Zimansky, Ph.D. thesis, Northwestern University (2008).

Page 39: Politechnika Wrocławska, 18 XI 2015

Andreev reflections – possible applications

Andreev-type scattering can be also considered in more comp lex junctions

P. Cadden-Zimansky, Ph.D. thesis, Northwestern University (2008).

incident electron

Page 40: Politechnika Wrocławska, 18 XI 2015

Andreev reflections – possible applications

Andreev-type scattering can be also considered in more comp lex junctions

P. Cadden-Zimansky, Ph.D. thesis, Northwestern University (2008).

incident electron

elastic tunelling

Page 41: Politechnika Wrocławska, 18 XI 2015

Andreev reflections – possible applications

Andreev-type scattering can be also considered in more comp lex junctions

P. Cadden-Zimansky, Ph.D. thesis, Northwestern University (2008).

incident electron

elastic tunelling

crossed Andreev refl.

Page 42: Politechnika Wrocławska, 18 XI 2015

Non-local transport – planar junctions

Page 43: Politechnika Wrocławska, 18 XI 2015

Non-local transport – planar junctions

ET/CAR processes have been first considered in the planar jun ctions

A, B – normal electrodes, S – superconducting material

G. Falci, D. Feinberg, F. Hekking, Europhys. Lett. 54, 255 (2001).

Page 44: Politechnika Wrocławska, 18 XI 2015

Non-local transport – planar junctions

Experimental realization (Delft group)

S. Russo, M. Kroug, T. M. Klapwijk & A.F. Morpurgo, Phys. Rev. Lett. 95, 027002 (2005).

Page 45: Politechnika Wrocławska, 18 XI 2015

Non-local transport – planar junctions

Experimental

realization

S. Russo, M. Kroug, T. M. Klapwijk & A.F. Morpurgo, Phys. Rev. Lett. 95, 027002 (2005).

Page 46: Politechnika Wrocławska, 18 XI 2015

Non-local transport – planar junctions

Experimental realization (Karlsruhe group)

J. Brauer, F. Hübler, M. Smetanin, D. Beckman, D. & H. von Löhneysen, Phys. Rev. B 81, 024515 (2010).

Page 47: Politechnika Wrocławska, 18 XI 2015

Non-local transport – planar junctions

Experimental realization (Karlsruhe group)

J. Brauer, F. Hübler, M. Smetanin, D. Beckman, D. & H. von Löhneysen, Phys. Rev. B 81, 024515 (2010).

Page 48: Politechnika Wrocławska, 18 XI 2015

3-terminal junctions – with quantum dots

Page 49: Politechnika Wrocławska, 18 XI 2015

3-terminal junctions – with quantum dots

Cooper pairs are split, preserving entanglement of individual electrons.

L. Hofstetter, S. Csonka, J. Nygård, C. Schönenberger, Nature 461, 960 (2009).

J. Schindele, A. Baumgartner, C. Schönenberger, Phys. Rev. Lett. 109, 157002 (2012).

... and many other groups.

Page 50: Politechnika Wrocławska, 18 XI 2015

3-terminal junctions – with quantum dots

Possible channels of the Cooper pair splitting

L.G. Herrmann et al, Phys. Rev. Lett. 104, 026801 (2010).

Page 51: Politechnika Wrocławska, 18 XI 2015

3-terminal junctions – with quantum dots

These processes are similar to the crossed Andreev scattering

and cause the strong non-local transport properties.

Page 52: Politechnika Wrocławska, 18 XI 2015

Non-local transport – crossed Andreev refelections

Page 53: Politechnika Wrocławska, 18 XI 2015

Non-local transport – crossed Andreev refelections

Quantum impurity in the 3-terminal configuration

L, R – normal electrodes, S – superconducting reservoir, QD – quantum dot

G. Michałek, T. Domanski, B.R. Bułka & K.I. Wysokinski, Scientific Reports 5, 14572 (2015).

Page 54: Politechnika Wrocławska, 18 XI 2015

Non-local transport – crossed Andreev refelections

Transmittance of the non-local transport channels

0

0.5

1T(E)

E / ΓL ΓS / ΓL

CARET

0 1

2 3

4

-5 0

5

ET – single electron transfer, CAR – crossed Andreev reflection

ε0 = 0

Page 55: Politechnika Wrocławska, 18 XI 2015

Non-local transport – crossed Andreev refelections

Non-local resistance in the linear response limit.

0 1 2 3 4 5 6

GS / GL

0

0.5

1

1.5

2

2RRS,LS/DR[e2/h] k

BT / G

L

0

0.3

0.5

max:

2e2/hGS=GL+GR

GS=(G

L+GR)÷

3

e0= 0

GR=GL

min:

-1/4 e2/h

1 2 3 4 6

RRS,LS ≡ VRS/ILS

Negative resistance for strong enough coupling ΓS !

Page 56: Politechnika Wrocławska, 18 XI 2015

Non-local transport – crossed Andreev refelections

Transmittance of the non-local transport channels

0

0.5

1T(E)

E / ΓL ε0 / ΓL

CARET

-2-1

0 1

2-5 0

5

ET – single electron transfer, CAR – crossed Andreev reflection

ε0 = 3ΓL

Page 57: Politechnika Wrocławska, 18 XI 2015

Non-local transport – crossed Andreev refelections

Non-local resistance in the linear response limit.

-4 -2 0 2 4

e0 / L

0

0.5

1

2RRS,LS/DR[e2/h]

GS/ G

L= 1

GS / G

L =3

0.5

0

0.3

kBT / G

L

GS/ G

L= 2

GR=GL

RRS,LS ≡ VRS/ILS

Negative resistance for strong enough coupling ΓS and ε0 ∼ 0 !

Page 58: Politechnika Wrocławska, 18 XI 2015

Non-local transport – crossed Andreev refelections

Beyond the linear response regime.

-8 -4 0 4 8

eVL/

L

-0.8

-0.4

0

0.4

0.8

eVR/

L

GS / GL= 2

G S/ G L=4

G S/G L=6

0.5

0.3

0

kBT / G

L

e0= 0

GR=G

L

Inverse sign of the non-local voltage for strong enough coupli ng ΓS .

Page 59: Politechnika Wrocławska, 18 XI 2015

Andreev reflections – other perspectives

Page 60: Politechnika Wrocławska, 18 XI 2015

Andreev reflections – other perspectives

Crossed Andreev reflections enable the separation of charge from heat currents

F. Mazza, S. Valentini, R. Bosisio, G. Benenti, V. Giovannetti, R. Fazio and F. Tadddei, Phys. Rev. B 91, 245435 (2015).

Page 61: Politechnika Wrocławska, 18 XI 2015

Andreev reflections – other perspectives

On-chip nanoscopic thermometer operating down to 7 mK.

A.V. Feshchenko, L. Casparis, ..., J.P. Pekola & D.M. Zumbühl, Phys. Rev. Appl. 4, 034001 (2015).

T. Faivre, D.S. Golubev and J.P. Pekola, Appl. Phys. Lett. 106, 182602 (2015).

Virtues of a device: ⇒ is almost free of any self-heating

⇒ operates at cryogenic temperatures

⇒ can thermally-monitor the qubits

Page 62: Politechnika Wrocławska, 18 XI 2015

Summary

Page 63: Politechnika Wrocławska, 18 XI 2015

Summary

Nanoscopic superconductors:

Page 64: Politechnika Wrocławska, 18 XI 2015

Summary

Nanoscopic superconductors:

⇒ can be induced by the proximity effect

Page 65: Politechnika Wrocławska, 18 XI 2015

Summary

Nanoscopic superconductors:

⇒ can be induced by the proximity effect

⇒ are manifested via the in-gap (Andreev/Shiba) quasiparticles

Page 66: Politechnika Wrocławska, 18 XI 2015

Summary

Nanoscopic superconductors:

⇒ can be induced by the proximity effect

⇒ are manifested via the in-gap (Andreev/Shiba) quasiparticles

The anomalous (subgap) tunneling can reveal:

Page 67: Politechnika Wrocławska, 18 XI 2015

Summary

Nanoscopic superconductors:

⇒ can be induced by the proximity effect

⇒ are manifested via the in-gap (Andreev/Shiba) quasiparticles

The anomalous (subgap) tunneling can reveal:

⇒ strong non-local properties (e.g. negative resistance)

Page 68: Politechnika Wrocławska, 18 XI 2015

Summary

Nanoscopic superconductors:

⇒ can be induced by the proximity effect

⇒ are manifested via the in-gap (Andreev/Shiba) quasiparticles

The anomalous (subgap) tunneling can reveal:

⇒ strong non-local properties (e.g. negative resistance)

⇒ separation of the charge from heat currents

Page 69: Politechnika Wrocławska, 18 XI 2015

Summary

Nanoscopic superconductors:

⇒ can be induced by the proximity effect

⇒ are manifested via the in-gap (Andreev/Shiba) quasiparticles

The anomalous (subgap) tunneling can reveal:

⇒ strong non-local properties (e.g. negative resistance)

⇒ separation of the charge from heat currents

⇒ realization of exotic quasiparticles (e.g. Majorana-type)

Page 70: Politechnika Wrocławska, 18 XI 2015

Summary

Nanoscopic superconductors:

⇒ can be induced by the proximity effect

⇒ are manifested via the in-gap (Andreev/Shiba) quasiparticles

The anomalous (subgap) tunneling can reveal:

⇒ strong non-local properties (e.g. negative resistance)

⇒ separation of the charge from heat currents

⇒ realization of exotic quasiparticles (e.g. Majorana-type)

http://kft.umcs.lublin.pl/doman/lectures