Physikalisches Institut EP3Physikalisches Institut, EP3...

43
H. Buhmann H. Buhmann Hartmut Buhmann Physikalisches Institut EP3 Physikalisches Institut, EP3 Universität Würzburg Germany

Transcript of Physikalisches Institut EP3Physikalisches Institut, EP3...

Page 1: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannH. Buhmann

Hartmut Buhmann

Physikalisches Institut EP3Physikalisches Institut, EP3Universität Würzburg

Germany

Page 2: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannQuantum Hall Effect

1 h

Nobel Prize K. von Klitzing 1985

Hall resistance 2

1eh

ienB

sxy ==ρ

ρxy

semiconductor 2DEG

ρxx

zero longitudinal resistance

Page 3: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannEdge Channels

magnetic field

-

g

-

-

- -

-

hi l d t tchiral edge states

Page 4: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannQuantum Spin Hall Effect

• The QSH state can be thought of as two copies of QH states one forB two copies of QH states, one for each spin component, each seeing the opposite magnetic field. (Bernevig and Zhang PRL 2006)

effB

(Bernevig and Zhang, PRL, 2006)

B effB

Page 5: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannQuantum Spin Hall Effect

• The QSH state can be thought of as two copies of QH states one fortwo copies of QH states, one for each spin component, each seeing the opposite magnetic field. (Bernevig and Zhang PRL 2006)(Bernevig and Zhang, PRL, 2006)

• The QSH state does not break the time reversal symmetry, and can exist without any external magnetic field.

−−+ sksk ,, ,ψψ

backscattering between Kramers’ doublets is forbidden

insulating bulk

Page 6: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannQuantum Spin Hall Effect

no magnetic fieldmagnetic field

- -- spin up

g

-

-

-

--

-

- - --spin down

chiral edge states helical edge states

Page 7: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannQSHE in Graphene

Graphene edge states

C.L.Kane and E.J.Mele, PRL 95, 226801 (2005)

• Graphene – spin-orbit coupling strength is too weak gap only about 10-3 meV. p p p g g g p y

• not accessible in experiments

Page 8: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannQSHE in HgTe

Helical edge statesfor inverted HgTe QW

E

H1

E1

kπ 0 π

B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

Page 9: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannH. Buhmann

Page 10: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannHgTe Quantum Well Structures

Carrier densities: ns = 1x1011 ... 2x1012 cm-2layer structure

gate Au

Carrier mobilities: μ = 1x105 ... 1.5x106 cm2/Vs

gate

insulator

Au

100 nm Si N /SiO3 4 2

cap layer

barrierdoping layer

25 nm HgCdTe x = 0.7

10 nm HgCdTe x = 0 7 9 nm HgCdTe with I10 nm HgCdTe x = 0.7

doping layer

barrier

barrierquantum well

9 nm HgCdTe with I10 nm HgCdTe x = 0.74 - 12 nm HgTe10 nm HgCdTe x = 0.7

symmetric or asymmetricd i

buffer

substrate CdZnTe(001)

25 nm CdTe10 nm HgCdTe x = 0.7 doping

( )

Page 11: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. Buhmannn to p Transitions

nmax = 1.35 x 1012 cm-2

100

150

H1

pmax = 3.2 x 1011 cm-20

50

E /

meV H2

150

-100

-50

E130000

T = 1.5 K

0,0 0,1 0,2 0,3 0,4 0,5-150

k / nm-1

10000

20000VGate

+5,0 V +4,5 V+4,0 V

Q21638 nm QW 0V

10000

0

+3,5 V +3,0 V +2,5 V +2,0 V+1,5 V

Rxy

/ Ω +5V

gate

insulator

cap layer

doping layer

-20000

-10000 +1,0 V +0,5 V 0 V -2,0 V-2V

doping layer

barrier

barrierquantum well

doping layer

buffer

0 2 4 6 8-30000

B / T

substrate

Page 12: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannHgTe

band structuresemi-metal or semiconductorsemi metal or semiconductor

1000

0

500

eV) 8

E

-500E(m

e

6

Eg

-1 0 -0 5 0 0 0 5 1 0-1500

-1000

7

fundamental energy gap

1.0 0.5 0.0 0.5 1.0k (0.01 )

D.J. Chadi et al. PRB, 3058 (1972)

fundamental energy gap

meV 30086 −≈− ΓΓ EE

Page 13: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannHgTe-Quantum Wells

BarrierQW

1000HgTe Hg0.32Cd0.68Te

1000

500

8

5006

-500

0

E(m

eV) 8

6 -500

0

E(m

eV)

8VBO

-1000

7

-1000

7

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

-1500

7

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

-1500

7

VBO = 570 meVVBO = 570 meV

Page 14: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannHgTe-Quantum Wells

Typ-III QW

d

HgTe

Γ6

HgCdTeHgCdTe

g

HH1E1

Γ8

band structure

invertednormal

Page 15: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannBand Gap Engineering

ΓH CdTHgTe

Γ6

Zero Gap for 6.3 nm QW structures

HgCdTeHgTe

Γ6

H1E1

HgCdTe

Γ8

E1H1

Γ8

Γ8

normal

inverted

direct band gaps between80 ... 0 and 0 ... - 30 meV

Page 16: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannQSHE in HgTe

Helical edge statesfor inverted HgTe QW

E

H1

E1

kπ 0 π

B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

Page 17: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannMass domain wall

invertedband structure

EH1

states localized on the domain wall which disperse along the x-direction

E1

y

m>0m<0

k3π 0 π

m

m>0y

x

m 0m 0

m0

m<0

x

m>0

x

helical edge states

Page 18: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannSimplified Picture

normal

m > 0 m < 0

insulator QSHE

bulkbulk

bulkinsulating

entire sampleinsulating

Page 19: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannH. Buhmann

Page 20: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. Buhmann

Experiment

ε ε

k k

Page 21: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannSmaller Samples

LL

W

(L x W) μm

2.0 x 1.0 μm1.0 x 1.0 μm1.0 x 0.5 μm

Page 22: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannQSHE Size Dependence

106 (1 x 1) μm2

non-inverted10

Ω

non inverted

105

2

Rxx

/ Ω

104G = 2 e2/h

(1 x 1) μm2(2 x 1) μm2

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0103 (1 x 0.5) μm2

(VGate- Vthr) / V

Page 23: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannQSHE in inverted HgTe-QWs

20

in 4-terminal geometry!?

V

16

18

0 V

12

14 G = 2 e2/h

I

8

10

Rxx

/ k

2

4

6

-1.0 -0.5 0.0 0.5 1.0 1.5 2.00

2

(V V ) / V(VGate- Vthr) / V

Page 24: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannQSHE in inverted HgTe-QWs

40

30

35G = 2/3 e2/h

I1

2 3

4

V

25

30

(kΩ

) 2 3V 56

15

20

G = 2 e2/h

Rxx

( I1 4

56

5

10(2 x 1) μm2

32 ≈t

RR-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0

(V V ) (V)

(1 x 0.5) μm2

4tR(VGate- Vthr) (V)

Page 25: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannMulti-Terminal Probe

Landauer-Büttiker Formalism normal conducting contacts

no QSHEno QSHE

( ) ⎤⎡∑e2

⎟⎞

⎜⎛− 100012

( ) ⎥⎦

⎤⎢⎣

⎡−−= ∑

≠ijjijiiiii TRM

heI μμ2

⎟⎟⎟⎟⎟⎞

⎜⎜⎜⎜⎜⎛

−−

=001210000121100012

T

214

43 2

2t

I eGhμ μ

⎧= =⎪ −⎪

⎨heG t

2

exp,4 2≈

⎟⎟⎟⎟⎟

⎠⎜⎜⎜⎜⎜

⎝ −−

210001121000012100

T 3 22

142

4 1

23t

I eGh

μ μ

μ μ

⎪⇒ ⎨⎪ = =⎪ −⎩

3exp4

2 ≈t

t

RR

⎠⎝ 210001

generally22 2)1(

ehnR t

+=

Page 26: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannNon-locality

Q2308: 250 | 90: 0.1 | 400 | 90 | 400 | 90: 0.1 | 1000 | ns= 3.1x1011, μ =143 000

6 8 9

1 μm2 μm

3 2 11

3

Page 27: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannNon-locality

LB 12 9 kΩ

gate sweep

@6 mK Q2308-02

LB: 12.9 kΩ

16

18

20

22

12

143

10

12

14

16

8

10

Rnl (k

Ω)I (

nA)

4

6

8

2

4

6

-5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.00

2

0

UGate [ V ]

Page 28: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannNon-locality

LB 8 6 kΩ

@6 mK Q2308-02

LB: 8.6 kΩ

50

60

70

12

143

30

40

50

8

10

Rnl (kΩ

)I / n

A

10

20

30

2

4

6

-5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.00 0

UGate [ V ]

Page 29: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannNon-locality

LB 4 3 kΩ

LB: 4.3 kΩ

5

63

3

4

nl (k

W)

1

2

Rn

-6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.00

Page 30: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannBack Scattering

potential fluctuations introduce areas of normal metallic (n- or p-) conductancepotential fluctuations introduce areas of normal metallic (n or p ) conductancein which back scattering becomes possible

QSHE

The potential landscape is modified by gate (density) sweeps!

Page 31: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannPotential Fluctuations

LB 4 3 kΩ

LB: 4.3 kΩ

5

63

3

4

nl (k

W)one additional contact:

• between 8 93.7 kΩ

1

2

R

x

-6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.00

3

Page 32: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannNon-locality

different gate sweep direction

@6 mK Strom: 6, 11Spannung: 8 9 Q2308-02

LB: 12,9 kΩ

18

20

22

20

22

24

26Spannung: 8, 9

10

12

14

16

12

14

16

18

Rnl (k

Ω)I (

nA)

4

6

8

4

6

8

10

-5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.00

2

0

2

UGate [ V ]

Page 33: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannPotential Fluctuations

gate-voltage dependenceimpurity statesdischarging charging

ulat

or

QW

met

al insu

hysteresis effects:

J. Hinz et al., Semicond. Sci. Technol. 21 (2006) 501–506

Page 34: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannNon-locality

two additional contacts:• between 8 9 and 6 8

19.4 kΩ

different gate sweep direction

Q2308-02

LB: 12,9 kΩxx

16

18

20

22

20

22

24

26

10

12

14

16

12

14

16

18

Rnl (k

Ω)I (

nA)

one additional contact:• between 8 9

2

4

6

8

4

6

8

10between 8 9

22.1 kΩ

x

-5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.00

2

0

2

UGate [ V ]

Page 35: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannH. Buhmann

Page 36: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannH. Buhmann

Page 37: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannSpin Polarizer

Page 38: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannSpin Polarizer

50%1 : 4

50%50%

1 01 : 0

Page 39: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannComing Soon

QSHE

SHEQSHE

SHE-1

Page 40: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. Buhmann

Split Gate H-Bar

Page 41: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannSummary: QSH Effect

• the QSH effect is a new non-trivial state of matter which consists ofconsists of – an insulating bulk and– two counter propagating spin polarized edge channelstwo counter propagating spin polarized edge channels

(Kramers doublet)

• the QSH effect shows up in a quantized conductance – the quantized value is strongly dependent on the number of

ohmic contactsohmic contacts – or the quality of the sample (potential fluctuations)

• and is destroyed by time reversal symmetry breaking effects, like a magnetic field, g

Page 42: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannAcknowledgements

Quantum Transport Group (Würzburg)

C. BrüneE. Rupp

A. Roth N. EikenbergR. RommelH Thierschmann

A. AstakhovaM. Mühlbauer

H. Thierschmann

Lehrstuhl für Experimentelle Physik 3: L W MolenkampLehrstuhl für Experimentelle Physik 3: L.W. Molenkamp

Univ. WürzburgInst. f. Theoretische Physik

Collaborations:

Ex-QT:Stanford University

S.-C. ZhangX L Qi

yE.M. Hankiewicz

C.R. BeckerT. BeringerM. LebrechtJ. Schneider

X.L. QiT. L. HughesJ. MaciejkoM KönigT. Spitz

S. WiedmannM. König

Page 43: Physikalisches Institut EP3Physikalisches Institut, EP3 ...info.ifpan.edu.pl/spintech5/presentations/buhmann_spintech5.pdf · Physikalisches Institut EP3Physikalisches Institut, EP3

H. BuhmannH. Buhmann

Quantum Spin Hall EffektScience 318, 766 (2007)

The Quantum Spin Hall Effect:Theory and ExperimentJ. Phys. Soc. Jap.Vol. 77, 31007 (2008)