Physics of Neutrinos at Ultra High Energiesringwald/astroparticle/talks/frascati_fin.pdf– Physics...
Embed Size (px)
Transcript of Physics of Neutrinos at Ultra High Energiesringwald/astroparticle/talks/frascati_fin.pdf– Physics...

Physics of Neutrinos atUltra High Energies
Andreas Ringwaldhttp://www.desy.de/˜ringwald
DESY
“The UHE Universe: a vision for the next decade”
Centro Congressi Villa Mondragone, Monteporzio Catone, Italy
June 19-21, 2006

– Physics of Neutrinos at UHE – 1
1. Introduction
• Existing observatories for Ultra HighEnergy Cosmic ν’s provide sensibleupper bounds on flux
• Upcoming decade: progressively lar-ger detectors for UHECν’s
⇒ E ≥ 1016 eV:
→ Astrophysics of cosmic rays
⇒ E ≥ 1017 eV:
→ Particle physics beyond LHC
⇒ E ≥ 1021 eV:
→ Cosmology: relics of phase tran-sitions; absorption on big bang re-lic neutrinos
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 2
• Further content:
2. Sources and fluxes of UHEC neutrinos
3. Fundamental physics opportunities of UHEC neutrinos
4. Conclusions
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 32. Sources and fluxes of UHEC neutrinos
• Paradigm for astrophysical extra-galactic source of protons and neu-trinos: shock acceleration– p’s, confined by magnetic fields,
accelerate through repeated scat-tering by plasma shock fronts
– production of π’s and n’s throughcollisions of the trapped p’s withambient plasma produces γ’s, ν’sand CR’s (n diffusion from source)
Hillas: Ep <∼ 1021 eV⇒ Eν <∼ 1020 eV
⇒ UHEC (Eν >∼ 1020 eV) neutrinos
← yet unknown acceleration sites← other acceleration mechanism← decay of superheavy particles
p
π+
µ+
e+
νµ
ν̄µ
νe
n
SHO
CK
[Ahlers PhD in prep.]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 42. Sources and fluxes of UHEC neutrinos
• Paradigm for astrophysical extra-galactic source of protons and neu-trinos: shock acceleration– p’s, confined by magnetic fields,
accelerate through repeated scat-tering by plasma shock fronts
– production of π’s and n’s throughcollisions of the trapped p’s withambient plasma produces γ’s, ν’sand CR’s (n diffusion from source)
Hillas: Ep <∼ 1021 eV⇒ Eν <∼ 1020 eV
⇒ UHEC (Eν >∼ 1020 eV) neutrinos
← yet unknown acceleration sites← other acceleration mechanism← decay of superheavy particles
Hillas-plot
(100 EeV)
(1 ZeV)
Γ
Neutronstar
maxE ~ ZBL
maxE ~ ZBL
White
dwarf
Protons
(candidate sites for E=100 EeV and E=1 ZeV)
GRB
Galacticdisk
halo
galaxiesColliding
jets
nuclei
lobes
hot-spots
SNR
Active
galaxies
Clusters
(Fermi)
(Ultra-relativistic shocks-GRB)
1 au 1 pc 1 kpc 1 Mpc
-9
-3
3
9
15
3 6 9 12 15 18 21
log(Magnetic field, gauss)
log(size, km)
Fe (100 EeV)
Protons
[Pierre Auger Observatory]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 52. Sources and fluxes of UHEC neutrinos
• Paradigm for astrophysical extra-galactic source of protons and neu-trinos: shock acceleration– p’s, confined by magnetic fields,
accelerate through repeated scat-tering by plasma shock fronts
– production of π’s and n’s throughcollisions of the trapped p’s withambient plasma produces γ’s, ν’sand CR’s (n diffusion from source)
Hillas: Ep <∼ 1021 eV⇒ Eν <∼ 1020 eV
⇒ UHEC (Eν >∼ 1020 eV) neutrinos
← yet unknown acceleration sites← other acceleration mechanism← decay of superheavy particles
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 62. Sources and fluxes of UHEC neutrinos
• Paradigm for astrophysical extra-galactic source of protons and neu-trinos: shock acceleration– p’s, confined by magnetic fields,
accelerate through repeated scat-tering by plasma shock fronts
– production of π’s and n’s throughcollisions of the trapped p’s withambient plasma produces γ’s, ν’sand CR’s (n diffusion from source)
Hillas: Ep <∼ 1021 eV⇒ Eν <∼ 1020 eV
⇒ Eν >∼ 1020 eV (super-GZK) ν’s:
← yet unknown acceleration sites← other acceleration mechanism← decay of superheavy particles
[Barbot,Drees ‘02]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 72. Sources and fluxes of UHEC neutrinos
• Paradigm for astrophysical extra-galactic source of protons and neu-trinos: shock acceleration– p’s, confined by magnetic fields,
accelerate through repeated scat-tering by plasma shock fronts
– production of π’s and n’s throughcollisions of the trapped p’s withambient plasma produces γ’s, ν’sand CR’s (n diffusion from source)
Hillas: Ep <∼ 1021 eV⇒ Eν <∼ 1020 eV
⇒ Eν >∼ 1020 eV (super-GZK) ν’s:
← yet unknown acceleration sites← other acceleration mechanism← decay of superheavy particles
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 8
Top-down scenarios for super-GZK neutrinos
• Existence of superheavy particleswith 1012 GeV <∼mX <∼ 1016 GeV,produced during and after inflationthrough e.g.– decomposition of topological de-
fects from late phase transitionsinto their constituents
⇒ super-GZK ν’s from constituentdecay
– particle creation in time-varyinggravitational field
⇒ super-GZK ν’s from decay or anni-hilation of superheavy dark matter(for τX >∼ τU) [Ringeval,Sakellariadou,Bouchet ‘06]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 9
Top-down scenarios for super-GZK neutrinos
• Existence of superheavy particleswith 1012 GeV <∼mX <∼ 1016 GeV,produced during and after inflationthrough e.g.– decomposition of topological de-
fects from late phase transitionsinto their constituents
⇒ super-GZK ν’s from constituentdecay
– particle creation in time-varyinggravitational field
⇒ super-GZK ν’s from decay or anni-hilation of superheavy dark matter(for τX >∼ τU)
1e+22
1e+23
1e+24
1e+25
1e+26
1e+27
1e+18 1e+19 1e+20 1e+21 1e+22E (eV)
E3 J(E)(eV2 m�2 s�1 sr�
1 ) MX = 1� 1014 GeV�p
p+
[Aloisio,Berezinsky,Kachelriess ‘04]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 10
Top-down scenarios for super-GZK neutrinos
• Existence of superheavy particleswith 1012 GeV <∼mX <∼ 1016 GeV,produced during and after inflationthrough e.g.– decomposition of topological de-
fects from late phase transitionsinto their constituents
⇒ super-GZK ν’s from constituentdecay
– particle creation in time-varyinggravitational field
⇒ super-GZK ν’s from decay or anni-hilation of superheavy dark matter(for τX >∼ τU) [Kolb,Chung,Riotto ‘98]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 11
Top-down scenarios for super-GZK neutrinos
• Existence of superheavy particleswith 1012 GeV <∼mX <∼ 1016 GeV,produced during and after inflationthrough e.g.– decomposition of topological de-
fects from late phase transitionsinto their constituents
⇒ super-GZK ν’s from constituentdecay
– particle creation in time-varyinggravitational field
⇒ super-GZK ν’s from decay or anni-hilation of superheavy dark matter(for τX >∼ τU)
[Aloisio,Berezinsky,Kachelriess ‘04]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 12
Top-down scenarios for super-GZK neutrinos
• How generic?
– Topological defects: generic pre-diction of symmetry breaking (SB)in GUT’s, and even fundamentalstring theory, e.g.∗ G→ H×U(1) SB: monopoles∗ U(1) SB: ordinary or supercon-
ducting strings∗ G→ H×U(1)→ H× ZN SB:
monopoles connected by strings– Superheavy dark matter: need
symmetry to prevent fast X decay∗ gauge ⇒ X stable∗ discrete⇒ stable or quasi-stable
x
y
z
Reφ
Imφ
[Rajantie ‘03]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 13
Top-down scenarios for super-GZK neutrinos
• How generic?
– Superheavy dark matter: needsymmetry to prevent fast X decay∗ gauge ⇒ X stable∗ discrete⇒ stable or quasi-stable
– Topological defects: generic pre-diction of symmetry breaking (SB)in GUT’s, including fundamentalstring theory, e.g.∗ G→ H×U(1) SB: monopoles∗ U(1) SB: ordinary or supercon-
ducting strings∗ G→ H×U(1)→ H× ZN SB:
monopoles connected by strings
SO(10)1
−→ 4C 2L 2R
8>>>>>>>>>>>>><>>>>>>>>>>>>>:
1−→ 3C 2L 2R 1B−L
8<: 1−→ 3C 2L 1R 1B−L
2 (2)−→ GSM (Z2)
2′ (2)−→ GSM (Z2)
1−→ 4C 2L 1R
8<: 1−→ 3C 2L 1R 1B−L
2 (2)−→ GSM (Z2)
2′ (2)−→ GSM (Z2)
1−→ 3C 2L 1R 1B−L
2 (2)−→ GSM (Z2)
1 (1,2)−→ GSM (Z2)
[Jeannerot,Rocher,Sakellariadou ‘03]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 14
Top-down scenarios for super-GZK neutrinos
• How generic?
– Topological defects: generic pre-diction of symmetry breaking (SB)in GUT’s, and even fundamentalstring theory, e.g.∗ G→ H×U(1) SB: monopoles∗ U(1) SB: ordinary or supercon-
ducting strings∗ G→ H×U(1)→ H× ZN SB:
monopoles connected by strings– Superheavy dark matter: need
symmetry to prevent fast X decay∗ gauge ⇒ X stable∗ discrete⇒ stable or quasi-stable
NECKLACE
M M
M
M M
M
MS NETWORK
[Berezinsky ‘05]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 15
Top-down scenarios for super-GZK neutrinos
• How generic?
– Topological defects: generic pre-diction of symmetry breaking (SB)in GUT’s, including fundamentalstring theory, e.g.∗ G→ H×U(1) SB: monopoles∗ U(1) SB: ordinary or supercon-
ducting strings∗ G→ H×U(1)→ H× ZN SB:
monopoles connected by strings– Superheavy dark matter: need
symmetry to prevent fast X decay∗ gauge ⇒ X stable∗ discrete⇒ stable or quasi-stable
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 16
3. Fundamental physics opportunities with UHEC neutrinos
• Cν’s with Eν >∼ 108 GeV probe νN
scattering at√
sνN >∼ 14 TeV (LHC)
• Perturbative Standard Model (SM)≈ under control (← HERA)
[Gandhi et al. ’98; Kwiecinski et al. ’98; ...]
⇒ Search for enhancements in σνN
beyond (perturbative) SM:
⋄ Electroweak sphaleron production(B + L violating processes in SM)⋄ Kaluza-Klein, black hole, p-brane
or string ball production in TeVscale gravity models⋄ . . .
[Tu ‘04]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 17
3. Fundamental physics opportunities with UHEC neutrinos
• Cν’s with Eν >∼ 108 GeV probe νN
scattering at√
sνN >∼ 14 TeV (LHC)
• Perturbative Standard Model (SM)≈ under control (← HERA)
[Gandhi et al. ’98; Kwiecinski et al. ’98; ...]
⇒ Search for enhancements in σνN
beyond (perturbative) SM:
⋄ Electroweak sphaleron production(B + L violating processes in SM)
⋄ Kaluza-Klein, black hole, p-braneor string ball production in TeVscale gravity models⋄ . . .
sphaleronE
N0 1cs
instanton
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 18
3. Fundamental physics opportunities with UHEC neutrinos
• Cν’s with Eν >∼ 108 GeV probe νN
scattering at√
sνN >∼ 14 TeV (LHC)
• Perturbative Standard Model (SM)≈ under control (← HERA)
[Gandhi et al. ’98; Kwiecinski et al. ’98; ...]
⇒ Search for enhancements in σνN
beyond (perturbative) SM:
⋄ Electroweak sphaleron production(B + L violating processes in SM)
⋄ Kaluza-Klein, black hole, p-braneor string ball production in TeVscale gravity models⋄ . . .
IW/Sph bL
bL
tL
sL
sL
cL
dL
dL
uL
νe
νµ
ντ
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 19
3. Fundamental physics opportunities with UHEC neutrinos
• Cν’s with Eν >∼ 108 GeV probe νN
scattering at√
sνN >∼ 14 TeV (LHC)
• Perturbative Standard Model (SM)≈ under control (← HERA)
[Gandhi et al. ’98; Kwiecinski et al. ’98; ...]
⇒ Search for enhancements in σνN
beyond (perturbative) SM:
⋄ Electroweak sphaleron production(B + L violating processes in SM)
⋄ Kaluza-Klein, black hole, p-braneor string ball production in TeVscale gravity models⋄ . . .
[AR ‘03]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 20
3. Fundamental physics opportunities with UHEC neutrinos
• Cν’s with Eν >∼ 108 GeV probe νN
scattering at√
sνN >∼ 14 TeV (LHC)
• Perturbative Standard Model (SM)≈ under control (← HERA)
[Gandhi et al. ’98; Kwiecinski et al. ’98; ...]
⇒ Search for enhancements in σνN
beyond (perturbative) SM:
⋄ Electroweak sphaleron production(B + L violating processes in SM)
⋄ Kaluza-Klein, black hole, p-braneor string ball production in TeVscale gravity models⋄ . . .
[Fodor,Katz,AR,Tu ‘03; Han,Hooper ‘03]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 21
3. Fundamental physics opportunities with UHEC neutrinos
• Cν’s with Eν >∼ 108 GeV probe νN
scattering at√
sνN >∼ 14 TeV (LHC)
• Perturbative Standard Model (SM)≈ under control (← HERA)
[Gandhi et al. ’98; Kwiecinski et al. ’98; ...]
⇒ Search for enhancements in σνN
beyond (perturbative) SM:
⋄ Electroweak sphaleron production(B + L violating processes in SM)
⋄ Kaluza-Klein, black hole, p-braneor string ball production in TeVscale gravity models⋄ . . .
j
i
R (s) S
3−brane
b
[Scientific American ‘00]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 22
3. Fundamental physics opportunities with UHEC neutrinos
• Cν’s with Eν >∼ 108 GeV probe νN
scattering at√
sνN >∼ 14 TeV (LHC)
• Perturbative Standard Model (SM)≈ under control (← HERA)
[Gandhi et al. ’98; Kwiecinski et al. ’98; ...]
⇒ Search for enhancements in σνN
beyond (perturbative) SM:
⋄ Electroweak sphaleron production(B + L violating processes in SM)
⋄ Kaluza-Klein, black hole, p-braneor string ball production in TeVscale gravity models⋄ . . . [Barklow,De Roeck ‘01]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 23
3. Fundamental physics opportunities with UHEC neutrinos
• Cν’s with Eν >∼ 108 GeV probe νN
scattering at√
sνN >∼ 14 TeV (LHC)
• Perturbative Standard Model (SM)≈ under control (← HERA)
[Gandhi et al. ’98; Kwiecinski et al. ’98; ...]
⇒ Search for enhancements in σνN
beyond (perturbative) SM:
⋄ Electroweak sphaleron production(B + L violating processes in SM)
⋄ Kaluza-Klein, black hole, p-braneor string ball production in TeVscale gravity models⋄ . . .
[AR,Tu ‘01; Tu ‘04]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 24
TeV scale physics with UHEC neutrinos
dN
dt∝
∫dEν Fν(Eν)σνN(Eν)
⇒ Non-observation of deeply-penetra-ting particles, together with lowerbound on Fν (e.g. cosmogenic ν’s)⇒ upper bound on σνN
[Berezinsky,Smirnov ‘74; Morris,AR ‘94; Tyler,Olinto,Sigl ‘01;..]
• Recent quantitative analysis:[Anchordoqui,Fodor,Katz,AR,Tu ‘04]
⋄ Best current limits from exploi-tation of RICE search results
[Kravchenko et al. [RICE] ‘02,03]
⋄ Auger will improve these limits byone order of magnitude [Anchordoqui,Fodor,Katz,AR,Tu ‘04]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 25
TeV scale physics with UHEC neutrinos
dN
dt∝
∫dEν Fν(Eν)σνN(Eν)
⇒ Non-observation of deeply-penetra-ting particles, together with lowerbound on Fν (e.g. cosmogenic ν’s)⇒ upper bound on σνN
[Berezinsky,Smirnov ‘74; Morris,AR ‘94; Tyler,Olinto,Sigl ‘01;..]
• Recent quantitative analysis:[Anchordoqui,Fodor,Katz,AR,Tu ‘04]
⋄ Best current limits from exploi-tation of RICE search results
[Kravchenko et al. [RICE] ‘02,03]
⋄ Auger will improve these limits byone order of magnitude [Anchordoqui,Fodor,Katz,AR,Tu ‘04]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 26
TeV scale physics with UHEC neutrinos
• Bounds exploiting searches for dee-ply-penetrating particles applicableas long as σνN <∼ (0.5÷ 1) mb
• For even higher cross sections, e.g.via sphaleron or brane production:
⇒ Strongly interacting neutrino sce-nario for the post-GZK events
[Berezinsky,Zatsepin ‘69]
• Quantitative analysis:[Fodor,Katz,AR,Tu ‘03; Ahlers,AR,Tu ‘05]
– Very good fit to CR data– Need steeply rising cross section,
otherwise clash with nonobservati-on of deeply-penetrating particles
[Ahlers,AR,Tu ‘05]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 27
TeV scale physics with UHEC neutrinos
• Bounds exploiting searches for dee-ply-penetrating particles applicableas long as σνN <∼ (0.5÷ 1) mb
• For even higher cross sections, e.g.via sphaleron or brane production:
⇒ Strongly interacting neutrino sce-nario for the post-GZK events
[Berezinsky,Zatsepin ‘69]
• Quantitative analysis:[Fodor,Katz,AR,Tu ‘03; Ahlers,AR,Tu ‘05]
– Very good fit to CR data– Need steeply rising cross section,
otherwise clash with nonobservati-on of deeply-penetrating particles
[Ahlers,A.R.,Tu ‘05]
[AR ‘03;Han,Hooper ‘04] - - - sphalerons
[Anchordoqui,Feng,Goldberg ‘02] – – – p-branes
[Burgett,Domokos,Kovesi-Domokos ‘04] ...string
excitations
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 28
GUT scale physics with super-GZK neutrinos
• Strong impact of measurement for
– particle physics
∗ GUT parameters, e.g. mX
∗ particle content of the desert,e.g. SM vs. MSSM
– cosmology
∗ window on early phase transition∗ Hubble expansion rate H(z)∗ existence of the big bang relic
neutrino background
[Fodor,Katz,AR,Weiler,Wong,in prep.]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 29
GUT scale physics with super-GZK neutrinos
• Strong impact of measurement for
– particle physics
∗ GUT parameters, e.g. mX
∗ particle content of the desert,e.g. SM vs. MSSM
– cosmology
∗ window on early phase transition∗ Hubble expansion rate H(z)∗ existence of the big bang relic
neutrino background
[Fodor,Katz,AR,Weiler,Wong,in prep.]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 30
GUT scale physics with super-GZK neutrinos
• Strong impact of measurement for
– particle physics
∗ GUT parameters, e.g. mX
∗ particle content of the desert,e.g. SM vs. MSSM
– cosmology
∗ window on early phase transition∗ Hubble expansion rate H(z)∗ existence of the big bang relic
neutrino background[Barbot,Drees ‘02]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 31
GUT scale physics with super-GZK neutrinos
• Strong impact of measurement for
– particle physics
∗ GUT parameters, e.g. mX
∗ particle content of the desert,e.g. SM vs. MSSM
– cosmology
∗ window on early phase transition∗ Hubble expansion rate H(z)∗ existence of the big bang relic
neutrino background (CνB)
[Fodor,Katz,AR,Weiler,Wong,in prep.]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 32
GUT scale physics with super-GZK neutrinos
• Strong impact of measurement for
– particle physics
∗ GUT parameters, e.g. mX
∗ particle content of the desert,e.g. SM vs. MSSM
– cosmology
∗ window on early phase transition∗ Hubble expansion rate H(z)∗ existence of the big bang relic
neutrino background (CνB)
[Fodor,Katz,AR,Weiler,Wong,in prep.]
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006

– Physics of Neutrinos at UHE – 33
4. Conclusions
• Exciting times for ultrahigh energycosmic rays and neutrinos:
– many observatories under con-struction
⇒ appreciable event samples
• Expect strong impact on
– astrophysics– particle physics– cosmology
A. Ringwald (DESY) The UHE Universe, Monteporzio Catone/I, June 2006