Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future...

31
Physics Capabilities of Future Atmospheric ν -Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India Neutrino Oscillation Workshop Conca Specchiulla, Otranto, Italy September 9-16, 2012 – p. 1/3

Transcript of Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future...

Page 1: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Physics Capabilities of Future

Atmospheric ν-Detectors

Srubabati Goswami

Physical Research Laboratory, Ahmedabad, India

Neutrino Oscillation WorkshopConca Specchiulla, Otranto, Italy

September 9-16, 2012

– p. 1/31

Page 2: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Atmospheric Neutrinos as Source

Cosmic Ray + Aair → π+ + . . .

π+ → µ+ + νµ

µ+ → e+ + νµ + νe

Provides a broad range of energy ascompared to any other natural and artificialsources Provides a wide range of path-length Hence a broad L/E band (1 to 105 km/GeV). The longer baseline allow matter effects todevelop Source of both neutrinos and antineutrinos Source of both νe and νµ

All these for free !!

– p. 2/31

Page 3: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Future Detectors for Atm ν

Magnetized Iron Detector (INO) 50 - 100 kT Muon energy measurement, direction reconstruction and chargediscrimination capability Can determine the neutrino energy and direction through Hadronshower reconstruction

Megaton Water Cerenkov Detector (HK, MEMPHYS) Large volume No charge ID Both electron and muon energy and direction measurement

Liquid Argon TPC Excellent electron and muon energy and direction measurement Charge ID ?

Neutrino Telescope (IceCube, PINGU) Huge Volume (Multi-Mton)

– p. 3/31

Page 4: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Physics Possibilities with Atmospheric νs

Measurement of |∆m231| and sin2 θ23

Determine if sin2 θ23 is maximal and if not then determination of its octant

Determination of Mass Hierarchy or sgn(∆m231)

CPT violation

Sterile Neutrinos,Non Standard Interactions, Long Range Forces...,

Plan of Talk

Determination of Mass Hierarchy and Octant in magnetized IronCalorimeter and Liquid Argon Detectors

– p. 4/31

Page 5: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Physics Possibilities with Atmospheric νs

An incomplete list of references...

Petcov (1998), Chizov, Maris, Petcov (1998), Akhmedov (1999),Akhmedov,Dighe,Lipari,Smirnov (1999),Kim (1998),Peres,Smirnov(1999),Bernabeu, Palomares-Ruiz, Perez, Petcov, (2002), Gonzalez-Garcia, Maltoni (2003), Bernabeu, Palomares-Ruiz, Petcov (2003), Peres, Smirnov (2004), Indumathi, Murthy (2004), Gandhi, Ghoshal, Goswami, Mehta, Sankar (2004), Gonzalez-Garcia, Maltoni, Smirnov (2004), Palomares-Ruiz, Petcov (2005), Choubey, Roy (2005), Fogli, Lisi, Marrone, Palazzo (2005); Huber, Maltoni, Schwetz (2005), T. Kajita (2005); E. K. Akhmedov, M. Maltoni and A. Y. Smirnov (2005), Petcov, Schwetz (2006), S. Choubey (2006); Indumathi, Murthy, Rajasekaran, Sinha (2006), E. K. Akhmedov, M. Maltoni and A. Y. Smirnov (2007), R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta, S. U. Sankar and S. Shalgar (2007), E. K. Akhmedov, M. Maltoni and A. Y. Smirnov (2008), Gandhi, Ghoshal, Goswami, Sankar (2008), Mena, Mocioiu, Razzaque (2008), Peres, Smirnov (2009), Gandhi, Ghoshal, Goswami, Sankar (2009), Samanta (2006 - 10), Samanta, Smirnov (2010), Conrad, de Gouvea, Shalgar (2010), Gonzalez-Garcia, Maltoni, Salvado (2011), Barger, Gandhi, Ghoshal, Goswami, Marfatia, Prakash, Raut, Sankar (2012), Blennow, Schwetz (2012), Akhmedov, Razzaque, Smirnov (2012), ..........

S. Choubey, Nu2012

– p. 5/31

Page 6: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

India Based Neutrino Observatory Proposal

Goal : To build an underground laboratory for science with neutrinophysics as major activity

The Detector: Magnetized Iron CALorimeter detector – (ICAL) fordetection of atmospheric neutrinos in its first phase.

Detector choice based on

Technological capabilities available in the country

Complementarity to Existing/Planned neutrino detectors in the world

Modularity and the possibility of phasing

Compactness and ease of construction

Other Possibilities

Neutrinoless double beta decay, Dark Matter Experiment (DINO)..

Second phase end detector for a beam experiment

International participation is welcome

– p. 6/31

Page 7: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

INO: Approval Status

Approvals from Indian Funding Agencies for

Construction of an underground Laboratory and surface facilities atPottipuram village in South India

Construction of 50 kton magnetized Iron Calorimeter detector to studyneutrino properties

Construction of INO center (The National Center for High EnergyPhysics) at Madurai in South India

Human Resource Development

Detector R & D

Completion of project in 6 years

N. Mondal, LP2011

http://www.ino.tifr.res.in

– p. 7/31

Page 8: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

INO: Location

Bodi West Hills, Pottipuram,

Theni district, Tamil Nadu

9°58’ N and 77°16’ E

110 km from Madurai city •

South India,

of Madurai (has airport)

Flat terrain with good access to major roads

Low rainfall, low humidity

Portal outside the RF boundary, surface facilities not on Forest Land,no clearing of forests required

Environmental and Forest Clearances obtained

26 Hectre Land provided free of cost by state Govt.

– p. 8/31

Page 9: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

INO: Site at a GlanceT Location of INO & Unique Features

Cavern set in Charkonite Rock under the 1589 m peak;

Vertical cover 1289 m;

Accessible through a 2 km tunnel

Cavern 1 will host 50 kt ICAL ( space for 100 kt);

Other caverns for multiple experiments (0νββ, DM)

– p. 9/31

Page 10: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

The detector: ICAL@INO

Active Detector Element : Resistive Plate Chambers made of glass

Iron plates Separatd by RPCs

S. Agarwalla, NNN2011

– p. 10/31

Page 11: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Salient Feautures of the Detector

Sensitive to muons

Good Energy determination from• Track length• Track curvature in a magnetic field

Directionality from tracking and ns timing resolution

Charge identification from track curvature in magnetic field

Hadron Shower reconstruction enables to determine the neutrino energy

– p. 11/31

Page 12: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Detector R&D Status

Development of RPC Full size RPC’s (2m X 2m ) being fabricated in INO Labs Large scale production developed with the help of Industry

Electronics Designing and Prototyping of electronics, trigger and data acquisitionsystems in progress

Magnet Prototype magnet running at VECC Calcutta

8m × 8m × 20 layers 800 ton engineering module is being planned

– p. 12/31

Page 13: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

INO: Simulation Framework at a Glance

!" #$

%$" &

Neutrino Event Generation a+ X -> A + B + ...

Generates particles that result from a random interaction of a neutrino with matter using

theoretical models .

Output:i) Reaction Channelii) Vertex Information

Iii) Energy & Momentum of all Particles

Event SimulationA + B + ... through RPCs + Mag.Field

Simulate propagation of particles through the detector (RPCs + Magnetic Field)

Output:i) x,y,z,t of the particles at their

interaction point in detectorii) Energy deposited

iii) Momentum information

Event Digitisation(x,y,z,t) of A + B + ... + noise + detector efficiency

Add detector efficiency and noise to the hits

Output:i) Digitised output of the previous

stage (simulation)

Event Reconstruction(E,p) of + X = (E,p) of A + B + ...

Fit the tracks of A + B + ... to get their energy andmomentum.

Output:i) Energy & Momentum of the

initial neutrino

N. Mondal, LP2011

– p. 13/31

Page 14: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

INO: Simulation Status

Neutrino 2012 Sandhya Choubey June 5, 2012

(GeV)µP0 5 10 15 20 25

µ/P

µP

σ

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24=0.35θCos

=0.55θCos

=0.85θCos

Momentum Resolution

(GeV)µP0 5 10 15 20 25

θσ

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045=0.35θCos

=0.55θCos

=0.85θCos

) Resolutionθcos(

(GeV)µP0 5 10 15 20 25

RE

C E

ff

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

=0.35θCos

=0.55θCos

=0.85θCos

Reconstruction Efficiency

(GeV)µP0 5 10 15 20 25

CID

E

ff

0.95

0.96

0.97

0.98

0.99

1

=0.35θCos

=0.55θCos

=0.85θCos

CID Efficiency

INO Collab, 2012

Inhomogeneous magnetic fieldimplemented

Muon energy and directionresolution from tracks achieved –improvements possible

Hadron energy resolution available

Neutrino energy and directionresolution using muon and hadroninformation possible

Optimization of iron plate thicknessin progress

– p. 14/31

Page 15: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Mass Hierarchy Sensitivity

Crux of the matter : Matter Effect

tan 2θ13m =

∆m2

31sin 2θ13

∆m2

31cos 2θ13±2

√2GF neE

For ∆m2atm > 0 matter resonance in neutrinos

For ∆m2atm < 0 matter resonance in anti neutrinos

Experiments sensitive to matter effects can probe the mass hierarchy

Matter effects for ∆m2atm channel depend crucially on θ13

Thus both parameters get related

Large measured θ13 =⇒ good news

Detectors with charge id that can discriminate between neutrinos andantineutrinos can be crucial

– p. 15/31

Page 16: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Matter effect at large baselines0 5 10 15

0

0.2

0.4

0.6

0.8

1

Pµe

NHIH

0

0.2

0.4

0.6

0.8

1

Pµµ

0 5 10 15E (GeV)

0.2

0.4

0.6

0.8

1

Pee

7000 km

0 5 10 15

0

0.2

0.4

0.6

0.8

1

Pµe

NHIH

0

0.2

0.4

0.6

0.8

1

Pµµ

0 5 10 15E (GeV)

0

0.2

0.4

0.6

0.8

1

Pee

10000 km

Large matter effects at long baselines in both µ and e events =⇒Hierarchy Sensitvity

νµ survival probability can rise or fall in matter

Energy and angular smearing important

– p. 16/31

Page 17: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Atmospheric Neutrinos at INO

Sensitive only to Muons

Differential Number of Muons

d2Nµ

dΩmdEm

=1

∫ 100

1

dEt

dΩtR(Et, Em)R(Ωt, Ωm)[ΦdµPµµ + Φd

ePeµ]σǫ

Energy and Angular Smearing Functions

R(Ωt, Ωm) = N exp

[

− (θt − θm)2 + sin2 θt(φt − φm)2

2(∆θ)2

]

.

R(Em, Et) =1√2πσ

exp

[

− (Em − Et)2

2σ2

]

.

Simplest ApproachUse fixed widths for energy and angular smearing

– p. 17/31

Page 18: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Effect of Smearing on muon χ2

5 10 15 20angular resolution (degree)

0

10

20

30

40

50

χ2 µ + χ

2 µ

5 10 15 20energy resolution (%)

0

10

20

30

40

50

15% energy resolution 10o angular resolution

INO, 1 Mt yr INO, 1 Mt yr

With increased energy or angular smearing the χ2 for muon like eventsdecrease.

Effect of energy smearing is more

R. Gandhi, P. Ghoshal, S.G., P. Mehta, S. Shalgar, S. Umashankar, PRD, 2007

Also, T. Schwetz and S.T. Petcov, Nucl. Phys. B, 2006

– p. 18/31

Page 19: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Hierarchy Sensitivity at INO

Events generated from NUANCE (50 kT, 10 yr exposure)

Two sets of energy/angular resolutions:’high’ (10%, 10o) and ’low’(15%, 15o)

Energy threshold 2 GeV, charge ID 100%, constant reconstructionefficiency 85%

True normal hierarchy, (θ23)tr = 45o, δCP = 0, (sin2 2θ13)tr = 0.1,∆m2

31 = 2.4 × 10−3 eV2, ∆m221 = 7.8 × 10−5 eV2, sin2 θ12 = 0.31

Res set χ2marg,no−pri χ2

marg,pri χ2fp

Low 1.5 3.1 4.5

High 5.4 8.2 9.7

Using Projected priors: ∆m231 = 2%, sin2 θ23 = 0.006 and fixed θ13

> 2σ to ∼ 3σ sensitivity to mass Hierarchy in 10 years

See also Blenow and Schwetz, 2010

– p. 19/31

Page 20: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Hierarchy Sensitivity from INO simulation

Using 50 Kton detector and events generated from NUANCE

Using ICAL resolutions in Muon energy and Zenith Angle

Using efficiency and Charge-ID from ICAL simulations

~2σ sensitivity for sin2θ =0.5, sin22θ =0.1 by 2022 (5 yrs)

θ

6 8 10 12 14 16 18 20

Years

0

2

4

6

8

10

12

14

16

18

20

22

24

!2

sin22"

13=0.1

sin22"

13=0.08

sin22"

13=0.12

3#

2#

Inverted Hierarchy

Marginalized over Δm2atm & θ23

with priors with projected errors

INO Preliminary INO Preliminary

6 8 10 12 14 16 18 20

Years

0

2

4

6

8

10

12

14

16

18

20

22

24

!2

sin22"

13=0.1

sin22"

!"#$%!&

sin22"

13=0.08

3#

2#

INO Preliminary

Normal HierarchyMarginalized over Δm2

atm & θ23

with priors with projected errors

INO Collab, 2012

True Values:∆m2

31 = 2.4 × 10−3 eV2

sin2 θ23 = 0.5

∆m221 = 7.8 × 10−5 eV2

sin2 θ12 = 0.31

δCP = 0

For sin2 2θ13 = 0.1 χ2proj−pri = 6.97 ∼ 2.7 σ sensitivity in 10 years

(Using Projected priors: ∆m231 = 2%, sin2 θ23 = 0.006 and fixed θ13)

– p. 20/31

Page 21: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Effect of δCP on hierarchy sensitivity

δ

δ

0 0.5 1 1.5 2

cp!

5

10

"#

2

all parameters are fixed

sin22$

13=.1

INO PreliminaryINO Preliminary

INO Collab, 2012

0 0.5 1 1.5 2δ [π]

0

5

10

15

∆χ

2 of

wro

ng m

ass

orde

ring

0

5

10

15

INO low resolution

INO high resolution

NOvA

Data simulated for NH and δCP = 0 and fitted for IH with varying δCP

MH sensitivity with atmospheric neutrinos almost independent of δCP

Complementarity with LBL experiments

– p. 21/31

Page 22: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Octant sensitivity in Pµµ

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

P!!

E (GeV)

394551

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

E (GeV)

394551 D ≡ 1/2 − sin2 θ23

|D| gives the deviation ofsin2 θ23

sgn(D) gives the octant ofsin2 θ23

NH, ν-resonance IH, anti-ν-resonance

Pmµµ ∼ sin4 θ23sin

2 2θm13 sin2 (1.27∆m

31L/E)

Octant sensitvity from the sin4 θ23 termS.Choubey. and P. Roy hep-ph/0509197

Indumathi,Murthy, Rajasekaran,Sinha hep-ph/0603264

– p. 22/31

Page 23: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Octant Sensitivity at INO

Events generated from NUANCE (50 kT, 10 yr exposure)

Results for ’high’ (10%, 10o) resolutions

Energy threshold 2 GeV, charge ID 100%, reconstruction efficiency 85%

39 40 41 42 43 44 45true θ

23

0

1

2

3

4

5

6

χ2 tot

Without priorWith prior

45 46 47 48 49 50 510

1

2

3

4

5

6

2 σ

True ParametersNormal Hierarchy(θ23)tr = 45o,δCP = 0,(sin2 2θ13)tr = 0.1,∆m2

21 = 7.8 × 10−5 eV2

sin2 θ12 = 0.31

< 2σ sensitvity for |θ23 − π/4| > 5

Analysis using INO simulation code in progress

– p. 23/31

Page 24: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Magentized Liquid-Ar TPC

50-100 Kton Magnetized LiqAr detector –

Energy threshold 1 GeV

Sensitive to both muons and electrons

100% CID for muons and 20% for electrons in the energy range 1-5 GeV

σEe= σEµ

= 0.01; σEhad=

(0.15)2/Ehad + (0.03)2

σEν=

(σEl)2 + (0.15)2/(yEν) + (0.03)2;

y → average rapidity = 0.45

σθe= 1.72; σθµ

= σθhad= 2.29; σθνe

= 2.8; σθνµ= 3.2

Barger,Gandhi,Ghosal,Goswami,Marfatia,Prakash,Raut,Umashankar, Phys. Rev.Lett., 2012

– p. 24/31

Page 25: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Hierarchy and Octant with electron events

excess of electron-like events:

Ne

N0e

− 1 ≃ (r s2

23− 1)P2ν(∆m2

31, θ13) θ13-effects

+ (r c2

23− 1)P2ν(∆m2

21, θ12) ∆m

2

21-effects

− 2s13s23c23 r Re(A∗

eeAµe) interference: δCP

r =F 0

µ

F 0e→ the flux ratio

0 0.02 0.04 0.06 0.08 0.1

sin22θ

13

1

1.1

1.2

1.3

1.4

Ne /

Ne0 f

or m

ulti-

GeV

eve

nts normal

sin2θ

23 = 0.64

sin2θ

23 = 0.36

normal

inverted

inverted

0.84 < cosθν

nadir < 1

Bernabeu, Palomares-Ruiz, Petcov, hep-ph/0305152

Resonant matter effect in P2ν(∆m231, θ13) for

multi-GeV neutrinos .

NH – neutrinos IH - antineutrinos

All three terms important for sub-GeVneutrinos

Sensitivity to both Hierarchy and Octant

– p. 25/31

Page 26: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Hierarchy Sensitivity using LiqAr TPC

0

10

20

30

40

0.04 0.06 0.08 0.1 0.12

χ2to

tpri

or

true sin2 2θ13

Liquid argon (250 kT yr), marginalized hierarchy sensitivity

|∆m2

31|tr = 0.0024 eV2, true NH, test IH

3σ sensitivity

DB RENO

sin2 θ23=0.5, no charge-id

sin2 θ23=0.4

sin2 θ23=0.5

sin2 θ23=0.6

0

10

20

30

40

0.04 0.06 0.08 0.1 0.12

χ2to

tpri

or

true sin2 2θ13

Liquid argon (250 kT yr), marginalized hierarchy sensitivity

|∆m2

31|tr = 0.0024 eV2, true IH, test NH

3σ sensitivity

DB RENO

sin2 θ23=0.5, no charge-id

sin2 θ23=0.4

sin2 θ23=0.5

sin2 θ23=0.6

χ2 = χ2µ + χ2

µ + (χ2e + χ2

e)1−5GeV + (χ2e+e)5−10GeV + χ2

prior

True values of undisplayed Parameters: (|∆m231|) = 2.4 × 10−3 eV2,

(δCP ) = 0, ∆m221 = 8 × 10−5 eV2, θ12 = 34

Marginalized over all parameters

> 5σ sensitivity for sin2 2θ13 = 0.1 and sin2 θ23 = 0.5

Drastic drop in sensitivity if no CID is assumed.

– p. 26/31

Page 27: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Octant Sensitivity using LiqAr TPC

0

5

10

15

20

40 42 44 46 48 50

χ2to

tpri

or

true θ23

Liquid argon (500 kT yr), marginalized octant sensitivity with priors

|∆m2

31|tr = 0.0024 eV2, NH

3σ sensitivity

2σ sensitivity

sin2 2θ13 (true) = 0.07

sin2 2θ13 (true) = 0.1

0

5

10

15

20

40 42 44 46 48 50

χ2to

tpri

or

true θ23

Liquid argon (500 kT yr), marginalized octant sensitivity with priors

|∆m2

31|tr = 0.0024 eV2, IH

3σ sensitivity

2σ sensitivity

sin2 2θ13 (true) = 0.07

sin2 2θ13 (true) = 0.1

500 Ktyr exposure

NH : 2σ discrimination for |θ23 − π/4| > 3.5 (sin2 2θ23 < 0.985).3σ Discrimination for |θ23 − π/4| > 5

IH : 2σ Discrimination for |θ23 − π/4| > 4 (sin2 2θ23 < 0.985).NH

θ23 χ2cid χ2

no−cid

39 15 12.5

42 3.3 2.8

Not having CIDdoes not affectthe results sodrastically.

IH

θ23 χ2cid χ2

no−cid

39 7.1 5.1

43 2.8 1.2

– p. 27/31

Page 28: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Conclusion

In view of large θ13 determination of of mass hierarchy and octant usingmatter effect in atmospheric neutrinos look very promising

INO a strong contender because of the possibility of magnetization andcharge identification

∼ 3σ sensitvity to mass hierarchy in 10 years for 50 kton detector

Hierarchy sensitivity from atmospheric neutrinos independent of δCP

Complimentary information to Long Baseline Experiments..

INO R&D going on full swing

Liquid Argon detectors with charge-id provides excellent hierarchysensitivity > 5σ for 250 ktyrs

Non-Magnetized LArTPC would necessarily need larger volume/exposure

Other possibilities ..CPT violation, Sterile Neutrinos,NSI, .....

– p. 28/31

Page 29: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

AcknowledgementsINO collaboration

INO CollaborationAhmadabad: Physical Research Lab.

Aligarh: Aligarh Muslim University

Allahabad: HRI

Calicut : University of Calicut

Chandigarh: Panjab University

Chennai : IIT, Madras IMSc

Delhi : University of Delhi

Guwahati : IIT, Guwahati

Hawaii (USA) : University of Hawaii

Indore : IIT, Indore

Jammu : University of Jammu

Kalpakkam : IGCAR

Kolkata : Ramakrishna Mission Vivekananda University, SINP, VECC , University of Calcutta

Lucknow : Lucknow University

Madurai : American College

Mumbai : BARC

Mumbai : IIT, Bombay TIFR

Mysore : University of Mysore

Sambalpur : Sambalpur University;

Sr inagar : University of Kashmir

Varanasi : Banaras Hindu University

Special Thanks : Animesh Chatterjee, Sandhya Choubey,AnushreeGhosh, Pomita Ghoshal, Sushant Raut, Nita Sinha, Tarak Thakore

– p. 29/31

Page 30: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

INO: Timeline

Neutrino 2012 Sandhya Choubey June 5, 2012N. Mondal, LP2011

– p. 30/31

Page 31: Physics Capabilities of Future - Istituto Nazionale di ... · Physics Capabilities of Future Atmospheric ν-Detectors Srubabati Goswami Physical Research Laboratory, Ahmedabad, India

Background

A preliminary study using a GEANT based simulation of cosmic ray muonbackground in INO shows that these are unlikely to mimic the signal

Indumathi and Murthy, hep-ph/0407336

NC background: the 6 cm thickness of the iron plates is sufficient toabsorb any pions and kaons in the 1−10 GeV range before they candecay.

Oscillated ντ induced muons softer in energy and can be eliminated bysuitable energy cuts

Agarwalla, Raychaudhuri, Samanta, hep-ph/0505015

– p. 31/31