Physic 231 Lecture 33 - NSCLlynch/Physics 231 lecture33.pdf · • Simple harmonic motion of a ......

10
Main points of last lecture: Simple harmonic motion of a spring: Main points of today’s lecture: Simple harmonic motion. Pendulum Physic 231 Lecture 33 constants are and / ) cos( ) sin( ) cos( 0 2 0 2 0 0 A m k t A a t A v t A x x x θ ω θ ω ω θ ω ω θ ω = + = + = + = ( ) 0 max 2 cos 2 ϑ π θ θ π + = = ft g L T

Transcript of Physic 231 Lecture 33 - NSCLlynch/Physics 231 lecture33.pdf · • Simple harmonic motion of a ......

Page 1: Physic 231 Lecture 33 - NSCLlynch/Physics 231 lecture33.pdf · • Simple harmonic motion of a ... • Simple harmonic motion. • Pendulum Physic 231 Lecture 33 ... Graphical Representation

• Main points of last lecture:• Simple harmonic motion of a

spring:

• Main points of today’s lecture:• Simple harmonic motion.• Pendulum

Physic 231 Lecture 33

constants are and /

)cos(

)sin()cos(

02

02

0

0

Amk

tAa

tAvtAx

x

x

θω

θωω

θωωθω

=

+−=

+−=+=

( )0max 2cos

2

ϑπθθ

π

+=

=

ftgLT

Page 2: Physic 231 Lecture 33 - NSCLlynch/Physics 231 lecture33.pdf · • Simple harmonic motion of a ... • Simple harmonic motion. • Pendulum Physic 231 Lecture 33 ... Graphical Representation

Quiz

• If a mass of 0.4 kg is suspended vertically by a spring, it stretches the spring by 2 m. Assume the spring is stretched further and released, and the mass plus spring system undergoes vertical oscillations. Calculate the angular frequency of the oscillatory motion.(Hint: Solve the static equilibrium to get k and then solve for ω)– a) 0.7 rad/s– b) 4.5 rad/s– c) 2.9 rad/s– d) 13.8 rad/s– e) 2.2 rad/s

( )( )

Hzkg

mNmk

mNm

smkgy

mgk

kymgFtotal

2.24.0

/96.1

/96.12

/8.94.0

02

===

==−

=⇒

−−==

ω

Page 3: Physic 231 Lecture 33 - NSCLlynch/Physics 231 lecture33.pdf · • Simple harmonic motion of a ... • Simple harmonic motion. • Pendulum Physic 231 Lecture 33 ... Graphical Representation

Verification of Sinusoidal Nature

• This experiment shows the sinusoidal nature of simple harmonic motion

• The spring mass system oscillates in simple harmonic motion

• The attached pen traces out the sinusoidal motion

• With no friction or viscosity, the amplitude of the oscillation remains the same.

• With damping, the amplitude decreases:

Page 4: Physic 231 Lecture 33 - NSCLlynch/Physics 231 lecture33.pdf · • Simple harmonic motion of a ... • Simple harmonic motion. • Pendulum Physic 231 Lecture 33 ... Graphical Representation

Graphical Representation of Motion

• When x is a maximum or minimum, velocity is zero

• When x is zero, the speed is a maximum

• When x is a maximum in the positive direction, a is a maximum in the negative direction

Page 5: Physic 231 Lecture 33 - NSCLlynch/Physics 231 lecture33.pdf · • Simple harmonic motion of a ... • Simple harmonic motion. • Pendulum Physic 231 Lecture 33 ... Graphical Representation

Conceptual question

• A mass attached to a spring oscillates back and forth as indicated in the position vs. time plot below. At point P, the mass has

– a. positive velocity and positive acceleration.– b. positive velocity and negative acceleration.– c. positive velocity and zero acceleration.– d. negative velocity and positive acceleration.– e. negative velocity and negative acceleration.– f. negative velocity and zero acceleration.– g. zero velocity but is accelerating (positively or negatively).– h. zero velocity and zero acceleration.

Page 6: Physic 231 Lecture 33 - NSCLlynch/Physics 231 lecture33.pdf · • Simple harmonic motion of a ... • Simple harmonic motion. • Pendulum Physic 231 Lecture 33 ... Graphical Representation

Example

The motion of an object is described by the equation

x = (0.30 m) cos(πt/3),

where t is assumed to be in seconds. Find (a) the position, (b) velocity and (c) acceleration of the object at t = 0 and t = 0.60 s, (d) the amplitude of the motion, (e) the frequency of the motion, and (f) the period of the motion.

( )( )( )

2

2

20

00

/26./37.024060at /33.00300at

1.1

)3/sin(3.005.1sin6/1 ;17.)2/( ,05.13/

0 ;3.0 ;cos :form general

sms ; am m; v.s:x.tsm ; a m; v.:xt

xxωa

tmHz)θt(A-vsfTHzfHzHz

θmA)θt(Ax

−=−===

−====

−=−=

−=+=======

==+=

πωωπωπω

ω

Page 7: Physic 231 Lecture 33 - NSCLlynch/Physics 231 lecture33.pdf · • Simple harmonic motion of a ... • Simple harmonic motion. • Pendulum Physic 231 Lecture 33 ... Graphical Representation

Simple Pendulum• The simple pendulum is another example

of simple harmonic motion• The torque is given by the gravitational

force times the moment arm– τ = - m gL sin θ

• Newton’s second law states:– τ = - m gL sin θ=Iα=mL2 α– ⇒α= - g/L sin θ

• For small angles < 15° :– L sin θ ≈ Lθ ⇒ sin θ ≈ θ– ⇒α= - g/L θ

• This is similar to the equation ax= - k/m x which describes the motion of mass plus spring. We therefore expect simple harmonic motion with:

)2sin(2 v; );2cos(

21/fT ;21

maxtmax ϑπθπθϑπθθ

ππ

+−==+=

===

ftfrsftgL

Lgf T depends on L and g

not on θmax

Page 8: Physic 231 Lecture 33 - NSCLlynch/Physics 231 lecture33.pdf · • Simple harmonic motion of a ... • Simple harmonic motion. • Pendulum Physic 231 Lecture 33 ... Graphical Representation

Comparison of simple pendulum to a spring-mass system

Page 9: Physic 231 Lecture 33 - NSCLlynch/Physics 231 lecture33.pdf · • Simple harmonic motion of a ... • Simple harmonic motion. • Pendulum Physic 231 Lecture 33 ... Graphical Representation

Example

• The period of a simple pendulum is 0.2% longer at location A than it is a location B. Find the ratio gA/gB of the acceleration due to gravity at these two locations.

996.002.11/

2 2

=⇒==

==

B

A

B

AAB

BB

AA

gg

ggTT

gLT

gLT ππ

Page 10: Physic 231 Lecture 33 - NSCLlynch/Physics 231 lecture33.pdf · • Simple harmonic motion of a ... • Simple harmonic motion. • Pendulum Physic 231 Lecture 33 ... Graphical Representation

Quiz

• Two playground swings start out together. During the time that swing 1 makes 10 complete cycles, swing 2 makes only 8.5 cycles. What is the ratios L1/L2 of the lengths of the swings?– a) .32– b) .42– c) .52– d) .62– e) .72

( )( )

72.85.0

2//2//

/10/5.8/

;

2

1

2

1

1

2121,2,

2,11,

=⇒=⇒

===

=∆=

LL

LL

LgLg

ffNN

cNtfN

cyclescycles

cyclescycles

ππ