PHOTONS IN CHEMISTRY OUT

31
PHOTONS IN CHEMISTRY OUT

description

PHOTONS IN CHEMISTRY OUT. PHOTONS IN CHEMISTRY OUT. WHY BOTHER?. Remote action. Remote action. Light has: Intensity Color (wavelength) Polarization. E = h ν. Light has: Intensity Color (wavelength) = ENERGY Polarization. Remote action Energetics. - PowerPoint PPT Presentation

Transcript of PHOTONS IN CHEMISTRY OUT

Page 1: PHOTONS IN CHEMISTRY OUT

PHOTONS INCHEMISTRY OUT

Page 2: PHOTONS IN CHEMISTRY OUT

PHOTONS INCHEMISTRY OUT

WHY BOTHER?

Page 3: PHOTONS IN CHEMISTRY OUT

1.Remote action

Page 4: PHOTONS IN CHEMISTRY OUT

1.Remote action

Page 5: PHOTONS IN CHEMISTRY OUT
Page 6: PHOTONS IN CHEMISTRY OUT
Page 7: PHOTONS IN CHEMISTRY OUT
Page 8: PHOTONS IN CHEMISTRY OUT
Page 9: PHOTONS IN CHEMISTRY OUT
Page 10: PHOTONS IN CHEMISTRY OUT
Page 11: PHOTONS IN CHEMISTRY OUT
Page 12: PHOTONS IN CHEMISTRY OUT

Light has:• Intensity• Color (wavelength)• Polarization

Page 13: PHOTONS IN CHEMISTRY OUT
Page 14: PHOTONS IN CHEMISTRY OUT
Page 15: PHOTONS IN CHEMISTRY OUT

E = h ν

Page 16: PHOTONS IN CHEMISTRY OUT

Light has:• Intensity• Color (wavelength) = ENERGY• Polarization

Page 17: PHOTONS IN CHEMISTRY OUT

1.Remote action

2.Energetics

Page 18: PHOTONS IN CHEMISTRY OUT

(wavelength) x (frequency) = speed [m/s]

λν = c [108 m/s]

Page 19: PHOTONS IN CHEMISTRY OUT
Page 20: PHOTONS IN CHEMISTRY OUT

E = h ν

Page 21: PHOTONS IN CHEMISTRY OUT

E hc

hcE

34 8

9

16

6.6 10 3 10

10

2 10

Js m sE

nm m

nmJ

1234 eVnm

191 1.6 10

119627kJ molnm

1000

N

Page 22: PHOTONS IN CHEMISTRY OUT

~ 450-750 nm

Take 500 nm

12342.5

500hE eV

194 10 J

240kJ mol

Page 23: PHOTONS IN CHEMISTRY OUT

2

1

E RTne

n

3

4

240 10 8.3

2.87 10

T

T

e

e

Boltzman

Page 24: PHOTONS IN CHEMISTRY OUT

42.87 102

1

Tne

n Boltzman

T [oK] n2/n1

300 3 x 10-42

400 7 x 10-32

1000 3.4 x 10-13

2,000 6 x 10-7

5,000 3 x 10-3

6,400 1 %

10,000 5.7 %

20,000 24 %

50,000 56 %

Page 25: PHOTONS IN CHEMISTRY OUT

42.87 102

1

Tne

n Boltzman

T [oK] n2/n1

300 3 x 10-42

400 7 x 10-32

1000 3.4 x 10-13

2,000 6 x 10-7

5,000 3 x 10-3

6,400 1 %

10,000 5.7 %

20,000 24 %

50,000 56 %

Page 26: PHOTONS IN CHEMISTRY OUT

42.87 102

1

Tne

n Boltzman

T [oK] n2/n1

300 3 x 10-42

400 7 x 10-32

1000 3.4 x 10-13

2,000 6 x 10-7

5,000 3 x 10-3

6,400 1 %

10,000 5.7 %

20,000 24 %

50,000 56 %

Page 27: PHOTONS IN CHEMISTRY OUT

42.87 102

1

Tne

n Boltzman

T [oK] n2/n1

300 3 x 10-42

400 7 x 10-32

1000 3.4 x 10-13

2,000 6 x 10-7

5,000 3 x 10-3

6,400 1 %

10,000 5.7 %

20,000 24 %

50,000 56 %

Page 28: PHOTONS IN CHEMISTRY OUT

42.87 102

1

Tne

n Boltzman

T [oK] n2/n1

300 3 x 10-42

400 7 x 10-32

1000 3.4 x 10-13

2,000 6 x 10-7

5,000 3 x 10-3

6,400 1 %

10,000 5.7 %

20,000 24 %

50,000 56 %

Page 29: PHOTONS IN CHEMISTRY OUT

Grotthuss-Draper law:

Only the light absorbed in a moleculecan produce photochemical Change in the molecule(1871 and 1841)

Stark - Einstein:

If a species absorbs radiation, then one particle is excited for each quantum of radiation absorbed

Page 30: PHOTONS IN CHEMISTRY OUT

Stark - Einstein:

If a species absorbs radiation, then one particle is excited for each quantum of radiation absorbed

QUANTUM YIELD:

Φ = The number of molecules of reactant consumed for each quantum of radiation absorbed

Primary Φ ≤ 1Sum of all primary Φ’s =1

Page 31: PHOTONS IN CHEMISTRY OUT