Phenomenological study for the and two-meson couplingtetsuo.hyodo/old/publication/06_06KEK.pdf ·...

21
1 2006, Mar . 1st Phenomenological study for the Θ + and two-meson coupling Tetsuo Hyodo a RCNP, Osaka a and A. Hosaka a

Transcript of Phenomenological study for the and two-meson couplingtetsuo.hyodo/old/publication/06_06KEK.pdf ·...

12006, Mar. 1st

Phenomenological study for the Θ+ and two-meson coupling

Tetsuo Hyodoa

RCNP, Osakaa

and A. Hosakaa

2

IntroductionPure antidecuplet case8–10 mixing case

Mass spectraDecay widths

Two-meson couplingCoupling constantsMeson induced Θ production

Summary

Contents

3

Introduction : Flavor SU(3) symmetry

Existence of Θ+ + Flavor SU(3) symmetry

Existence of flavor partners of Θ+

Phenomenological but model independent analysis up to O(ms)

Assuming the flavor multiplet that Θ+ belongs to, we examine its propertiesby symmetry relation, in connection with known baryon resonances.

to determine the JP of Θ+

4

Pure antidecuplet case

Simplest assignment for Θ+

Test the masses and widths of partnersvia flavor SU(3) symmetry relations

5

Pure antidecuplet case

Mass : Gell-Mann—Okubo formulaM(10;Y ) = M10 − aY

gΘKN =√

6gN∗πN

ΓR = g2RFI

p2l+1

M2lR

Width : SU(3) symmetric coupling

Two parameters <— Mass of Θ and N*

One parameter <— Width of N*

6

Pure antidecuplet caseMass and width [MeV]

JP MΘ MN MΣ MΞ ΓΘ

1/2- 1540 1647 1753 1860 156.1 exp. Θ(1540) N(1650) Σ(1750) Ξ(1860)

1/2+ exp.

3/2+ exp.3/2- exp.

M(10;Y ) = M10 − aY, gΘKN =√

6gN∗πN , ΓR = g2RFI

p2l+1

M2lR

7

Pure antidecuplet case

JP MΘ MN MΣ MΞ ΓΘ

1/2- 1540 1647 1753 1860 156.1 exp. Θ(1540) N(1650) Σ(1750) Ξ(1860)

1/2+ 1540 1710 1880 2050 7.2 exp. Θ(1540) N(1710) Σ(1880) Ξ(2030)

3/2+ exp.3/2- exp.

Mass and width [MeV]M(10;Y ) = M10 − aY, gΘKN =

√6gN∗πN , ΓR = g2

RFIp2l+1

M2lR

8

Pure antidecuplet case

JP MΘ MN MΣ MΞ ΓΘ

1/2- 1540 1647 1753 1860 156.1 exp. Θ(1540) N(1650) Σ(1750) Ξ(1860)

1/2+ 1540 1710 1880 2050 7.2 exp. Θ(1540) N(1710) Σ(1880) Ξ(2030)

3/2+ 1540 1720 1900 2080 10.6 exp. Θ(1540) N(1720)3/2- exp.

Mass and width [MeV]M(10;Y ) = M10 − aY, gΘKN =

√6gN∗πN , ΓR = g2

RFIp2l+1

M2lR

9

Pure antidecuplet case

JP MΘ MN MΣ MΞ ΓΘ

1/2- 1540 1647 1753 1860 156.1 exp. Θ(1540) N(1650) Σ(1750) Ξ(1860)

1/2+ 1540 1710 1880 2050 7.2 exp. Θ(1540) N(1710) Σ(1880) Ξ(2030)

3/2+ 1540 1720 1900 2080 10.6 exp. Θ(1540) N(1720)3/2- 1540 1700 1860 2020 1.3 exp. Θ(1540) N(1700) Ξ(2030)

are not reproduced simultaneously.

Mass and width [MeV]M(10;Y ) = M10 − aY, gΘKN =

√6gN∗πN , ΓR = g2

RFIp2l+1

M2lR

10

Octet-antidecuplet mixing

Second simplest assignment for Θ+

Mixing is induced by the SU(3) breakingin mass term.

mix

mix

11

MΣ1 = (M8 + 2c) cos2 θΣ + M10 sin2 θΣ − δ sin 2θΣ

MΣ2 = (M8 + 2c) sin2 θΣ + M10 cos2 θΣ + δ sin 2θΣ

MΞ8 = M8 + b +12c

MΞ10= M10 + aMΘ = M10 − 2a

MN1 =(

M8 − b +12c

)cos2 θN + (M10 − a) sin2 θN − δ sin 2θN

MN2 =(

M8 − b +12c

)sin2 θN + (M10 − a) cos2 θN + δ sin 2θN

MΛ = M8

Octet-antidecuplet mixing

Mass formulae : GMO + mixing (N,Σ)

8 masses v.s. 6 parametersJP = 1/2— : too wide widthJP = 3/2+ : states are not well established

12

π−p

K+

n

K+

π+

p

K+

n

K+

π+

∆+

ρ0

p

K+

n

π+

K+

Mass spectra2000

1900

1800

1700

1600

1500

1400

Mas

s sp

ectr

um

[M

eV]

2000

1900

1800

1700

1600

1500

1400

Mas

s sp

ectr

um

[M

eV]

1/2+

3/2—

N8

N10

N(1440)

N(1710)

N8

N10

N(1520)

N(1700)

10 (1540) 10

(1540)

10

(1860)

10 (1860)

10

(1690)

10

(1660)

8

(1880)

8

(1670)

8

(1690)8

8(1820)

8

8 10 Theory Exp. 8 10 Theory Exp.

N1

N2

10

1

2

8

N1

N2

10

1

2

8

predicted predicted

13

π−p

K+

n

K+

π+

p

K+

n

K+

π+

∆+

ρ0

p

K+

n

π+

K+

Decay width of Θ

JP θN [deg] ΓΘ [MeV]

1/2+ 29 29.1

3/2- 33 3.1

gΘ =√

6(gN2 cos θN − gN1 sin θN )

ΓR = g2RFI

p2l+1

M2lR

N* decay

from masses

Narrow width

14

π−p

K+

n

K+

π+

p

K+

n

K+

π+

∆+

ρ0

p

K+

n

π+

K+

Two-meson coupling

π+π−

K+

K−

p Θ+

the cross section of

SU(3) relation enable us to calculate

from the decay of N* —> π π N

Then, what about two-meson coupling?

: large branching ratio of N* —> π π N: π K N molecule picture for the Θ

15

π−p

K+

n

K+

π+

p

K+

n

K+

π+

∆+

ρ0

p

K+

n

π+

K+

Two-meson coupling

s s v v

Hosaka, Hyodo, Estrada, Oset, Peláez, Vacas, PRC71, 074021 (2005).The structure of the two-meson coupling

• These terms provided a sizable contribution.

• The effect of the two-meson coupling was studied by evaluating the self-energy.• We examined possible structures, and found that two types of the interaction Lagrangians were important.

16

π−p

K+

n

K+

π+

p

K+

n

K+

π+

∆+

ρ0

p

K+

n

π+

K+

Two-meson coupling

JP state πN ππN(s) ππN(v)1/2+ N(1440) 65 7.5 <8

N(1710) 15 25 153/2- N(1520) 55 25 20

N(1700) 10 <85-95 <35

Branching fraction [%]

5

4

3

2

1

0

|gs |

5

4

3

2

1

0

|gv|

phase 1 phase 1phase 2 phase 2

5

4

3

2

1

0

|gs |

5

4

3

2

1

0

|gv|

phase 1 phase 1phase 2 phase 2

Still large uncertainty

17

π−p

K+

n

K+

π+

p

K+

n

K+

π+

∆+

ρ0

p

K+

n

π+

K+

Constraints on the coupling

π-p -> K-Θ+ at KEK : upper limit is ~ 4.1 μb

Self-enefgy : not too large, but not too small

p Θ+

π− K−

< 4.1 μb

~ 100 MeV

We impose phenomenological constraints.

18

π−p

K+

n

K+

π+

p

K+

n

K+

π+

∆+

ρ0

p

K+

n

π+

K+

Constraints on the coupling

Two structures should be added coherently.

p Θ+

π− K−

—> interference effect among s and v.

p Θ+

π− K−

s v

19

π−p

K+

n

K+

π+

p

K+

n

K+

π+

∆+

ρ0

p

K+

n

π+

K+

Θ production12

10

8

6

4

2

0

[b

]

260024002200200018001600s [MeV]

s v Total

200

150

100

50

0

[b

]

260024002200200018001600s [MeV]

s v Total

-p -> K- + K+p -> + +

20

15

10

5

0

[ b]

260024002200200018001600s [MeV]

s v Total

140

120

100

80

60

40

20

0

[ b]

260024002200200018001600s [MeV]

s v Total

-p -> K- + K+p -> + +

1/2+

3/2-

largeinterference

σ(K+)σ(π−)

∼ 50

smallinterference

σ(K+)σ(π−)

∼ 3

20

Summary 1 : mixing scheme

Masses of Θ(1540) and Ξ(1860) are well fitted in the 8–10 mixing scheme with JP = 1/2+ or 3/2— baryons.A very narrow width of Θ can be obtained for the JP = 3/2— case.For both JP, the mixing angle is close to the ideal angle.T. Hyodo and A. Hosaka, Phys. Rev. D71, 054017 (2005)

We examine 8–10 mixing scheme for the exotic and non-exotic baryon resonances.

21

/1/2+ 1.59 -0.27 50 -78 MeV3/2− 0.104 0.209 3 -23 MeV

Summary 2 : Two-meson coupling and Θ producion

There is an interference effect between two amplitudes, which is prominent for 1/2+ case and rather moderate for 3/2- case

T. Hyodo and A. Hosaka, Phys. Rev. C72, 055202 (2005)

Based on the mixing scheme, we evaluate the two-meson coupling of Θ, and calculate the reaction process for Θ production

gs gv σπ−σK+ ReΣΘJP