PhD Thesis
-
Author
dimos-kontogeorgos -
Category
Documents
-
view
53 -
download
6
Embed Size (px)
Transcript of PhD Thesis
-
, 2012
( )
/
.
...
:
.
...
-
, 2012
( )
/
.
...
:
1. . , . ... ()
2. . , . ...
3. . , . ...
:
1. . , . ... ()
2. . , . ...
3. . , . ...
4. . , . ...
5. . , . . ...
6. . , ...
7. . , ...
-
. . (. 5343/1932, 202)
-
,
,
-
i
,
, . ,
, ,
. ,
, :
.
,
,
. ,
,
.
,
, . ,
K X B (KXB) ,
, ,
, .
(), ,
,
, . ,
(, ..),
, , ,
, ,
, , , .
, ,
,
,
.
,
,
,
- ( ),
- ( ) - (
) .
-
ii
,
-, ,
,
.
(),
,
.
- - ,
,
, .
,
. ,
,
- ,
. ,
GPRO (Gypsum PROperties). GPRO
.
,
- .
HETRAN (HEat TRansfer ANalysis),
,
, .
HETRAN
,
, . , - HETRAN
-
, GPRO.
-
iii
-
, ,
. ,
.
. ,
,
,
600 oC.
,
.
,
GPRO
, . GPRO
,
.
,
.
, HETRAN, GPRO,
. HETRAN
,
,
. , HETRAN
,
,
,
.
,
,
. ,
-
iv
-
, ,
.
,
, ,
- -. ,
.
-
v
Abstract
Fires in buildings form the main death and destruction cause during fires, despite the fact
that there are not first in frequency. The latter, creates the necessity for controlling and
preventing the fire spread inside buildings, firstly for the safety of human life, and secondly
for the safety of the construction. For that reason, each state establishes fire protection laws
and regulations, which can be distinguished in two main categories: active and passive fire
protection measures. Active fire protection measures aim to trace the fire inside a building, to
inform the inhabitants of the building and to attack the fire, in order to confine it and
finally quench it. On the other hand, passive fire protection measures aim to confine and
delay the fire spread inside of an ablaze building, in order to create enough time for building
evacuation and fire suppression.
Passive fire protection measures compose not only the modern, but also the necessary way
for the fire protection of a construction. On the other hand, Light Weight Construction (LWC)
continuously increases its share in construction due to aesthetic and design versatility, as well
as due to its very good mechanical, thermal, fire and anti-seismic behavior. Dry Wall Systems
(DWS), which are part of LWC systems, are widely used in buildings not only due to their
very good mechanical and anti-seismic behavior, but also due to their very good thermal
behavior under fire conditions. The latter, is mainly due to the fact that the walls (gypsum
boards, cement boards etc.), that DWS consist of, contain water in their crystal structure,
which, under high temperature conditions, is evaporated, absorbing significant heat
quantities from the fire, and thus, delaying the heat transfer through the assembly.
The main goal of this dissertation is the development of specialized computational tools,
in order to accurately predict the variation of the physical properties and the transfer
phenomena inside porous materials (structural elements), which are exposed to different
temperature conditions. Moreover, these computational tools are designed in order to be able
to be combined with detailed Computational Fluid Dynamic (CFD) codes. The frame for the
development of these tools is based on an integrated study, which is presented for the first
time in this dissertation, of the thermal behavior of a structural material which is exposed to
different temperature conditions, and demands the thorough examination of this behavior at
a micro-scale (micro-structure size level), meso-scale (structural element size level) and
macro-scale (building size level) size level.
At first, as part of the micro-scale level study of the thermal behavior of structural
elements, exposed to different temperature conditions, available computational methods
from the open literature, which are used for the determination of the kinetic parameters of
solid state reactions, are programmed. The developed computational tool can be used for post
-
vi
processing the Differential Scanning Calorimetry (DSC) measurements and for defining the
kinetic parameters of a solid state reaction that may occur when a structural element is
exposed to different temperature conditions.
The connection bond between the micro- and meso-scale size levels, when studying the
thermal behavior of a structural element exposed to different temperature conditions, is the
physical properties of the materials, which compose the element and need to be modeled. For
this purpose, an integrated system of algebraic equations, that defines the physical properties
of a porous material, is presented. In particular, the physical properties that are related to
heat and mass transfer through a porous material are modeled, using this system of
equations, as well as the kinetic parameters, obtained from the micro-scale level analysis. The
above system is programmed and a computational tool named GPRO (Gypsum PROperties)
is developed. GPRO is a general computational tool, which is capable of predicting the
variation of physical properties of a porous material, exposed to different temperature
conditions.
The next step of the integrated study of the thermal behavior of a structural element
exposed to different temperature conditions is the study at a meso-scale level. During this
dissertation, a computational tool, named HETRAN (HEat TRansfer ANalysis), is developed,
in order to predict the thermal behavior of a structural element, composed of multilayer
building materials, exposed to different temperature conditions. HETRAN code has been
developed to fill in the gap in existing computational tools regarding simultaneous heat and
mass transfer in multilayered porous materials, as it solves a system of partial differential
equations, capable of describing the one dimensional simultaneous heat and mass transfer
through porous materials. Finally, the meso-scale HETRAN code, takes into account the effect
of the micro-scale level study, by using the physical properties, obtained from the GPRO
computational tool.
The developed tools are validated and then used in order to simulate the different
physical-chemical processes that take place inside commercial gypsum boards, which are
basic elements of DWS, when they are exposed to high temperatures. Firstly, several DSC
measurements are performed, through which the theoretical background of these processes is
verified. Based on the DSC measurements, a simple system of algebraic equations is
developed, for the determination of the initial composition of a commercial gypsum board
and the energy absorbed or produced at the end of each process. Moreover, the developed
computational tool for the definition of the kinetic parameters of a solid state reaction is used,
in conjunction with the DSC measurements, in order to define the kinetic parameters of the
most important processes that take place inside a gypsum board at temperatures up to 600 oC.
Predictions of each reaction progress are compared with experimental data, revealing an
-
vii
excellent agreement. It is established that the obtained kinetic parameters can accurately
describe the physical-chemical processes, which take place inside a gypsum board at
temperatures up to 600 oC.
Thereinafter, these kinetic parameters are incorporated into GPRO code in order to
simulate the variation of physical properties of commercial gypsum boards, exposed to
elevated temperatures. The validation of GPRO is performed with experimental data
available from the literature and experimental data measured during the dissertation. Results
showed that the developed computational tool can accurately describe the variation of the
physical properties of a commercial gypsum board, exposed to elevated temperatures, and
confirms that it can be used for parametric studies, in order to improve the physical
properties of a gypsum board.
Finally, HETRAN code is used, in conjunction with GPRO code, in order to simulate the
thermal behavior of commercial gypsum board slabs and assemblies, which are exposed to
elevated temperatures. Predictions of HETRAN code are compared with experimental data
available from the literature, as well as with experimental data measured during the
dissertation, revealing the very good accuracy of the numerical results. Furthermore,
HETRAN code is used in order to assess the effect of several parameters, such as the heat and
mass transfer mechanisms inside the gypsum board porous structure, the heating rate and the
water vapor partial pressure, on the thermal behavior of gypsum boards under high
temperature conditions. Results showed that the developed computational tool can accurately
describe the thermal behavior of a commercial gypsum board or a DWS composed of gypsum
boards under fire conditions. Thus, it contributes not only to the theoretical study of the
different physical-chemical phenomena that take place inside a gypsum board when it is
exposed to elevated temperatures, but also to the design process, parametric study and
optimization of the material.
To sum up, the computational tools, which were developed in this thesis, are capable of
describing the thermal behavior of commercial gypsum boards, at micro- and meso-scale
level. Thus, they can be used in order to give a clear picture of how a gypsum board behaves,
during its exposure to high temperatures conditions.
-
viii
-
ix
,
.
2007 2011.
.
, ,
,
.
, ,
.
,
.
, ,
,
.
,
, , ,
, ,
, , ,
,
, ,
.
. ,
, ,
CT-METRE
. ,
-,
. ,
-
x
,
.
, Dr. Ghazi Wakili, EMPA
Materials Science & Technology,
, .
,
,
.
, ,
, , ,
, .
, .
.
2012
-
xi
..................................................................................................................................... I
ABSTRACT ..................................................................................................................................... V
................................................................................................................................ IX
..................................................................................................... XI
.................................................................................................... XVII
...................................................................................................... XXVII
.................................................................................................... XXXVII
1 ............................................................................................................................... 1
1.1 ..................................................................................................................... 2
1.2 ..................................................................................................................... 3
1.2.1 ................................................................................................ 4
1.2.2 ................................................................................................... 6
1.3 .................. 8
1.4 ........................................................................ 10
1.5 ................................................................................................ 12
1.6 .................................................................................................. 13
1.7 ....................................................................................................................... 16
2 ... 19
2.1 ................................................................................................................................ 19
2.2 - ................................................................................................................... 21
2.2.1 .................................................................. 22
2.2.1.1 ............................................................. 23
2.2.1.2 ............... 24
2.2.1.3 ........................................... 24
2.2.1.4 ....................... 25
2.2.2 ................................................................................................. 25
2.3 - .................................................................................................................... 26
-
xii
2.3.1 ................................................................................................... 27
2.3.2 ............................................................................................. 27
2.4 - .................................................................................................................. 28
3 .......................................... 31
3.1 ................................................................................................................................ 31
3.1.1 ............................................................................................................... 32
3.1.2 .................................................................................................... 32
3.1.3 ................................................................... 33
3.2 ........................................................ 35
3.2.1 .................................................................... 37
3.2.1.1 ...................................................................... 38
3.2.1.2 .................................................................................................................. 38
3.2.1.3 ........................................................................................................... 39
3.2.2 .............................................................. 40
3.2.2.1 ............................................................................................................... 41
3.2.2.2 ........................................................................................................ 43
3.2.3 -
................................................................................................ 45
3.2.3.1 .................................................................................. 45
3.2.3.2 ......................................................................................... 46
4 ............................................................................................... 49
4.1 ................................................................................................................................ 49
4.2 ........................................................................................... 50
4.2.1 ........................................................................................................................... 51
4.2.2 .......................................................................................................................... 51
4.2.3 ............................................................................................... 51
4.3 .......................................................................................................... 53
4.3.1 ........................................................................................................ 53
4.3.2 .................................................................................................................. 56
-
xiii
4.3.3 ........................................................................ 59
4.4 .................................................................................................... 60
4.5 ................................................................................. 60
4.6 ........................................................................ 63
5
.................................................................................... 65
5.1 ................................................................................................................................ 65
5.2
............................................................................................................................................. 67
5.2.1 .......................................................................................... 67
5.2.2 .......................................................... 69
5.2.3 ........................................................................................................... 70
5.3
............................................................................................................. 70
5.3.1 ........................................................................................... 72
5.3.2 .............................................................................................. 73
5.3.3 ......................................................................................... 73
5.4 .............................................................................................................. 73
5.5 HETRAN ................................................................................... 76
5.5.1 ........................................................................................................ 76
5.5.2 ............................................. 77
5.5.3 ................................................................................. 78
5.5.4 ........................................................................................... 79
6 ...... 81
6.1 ................................................................................................................................ 81
6.2 ................................................................................................... 82
6.2.1 .............................................................................................. 84
6.2.2 ................................................................................................ 86
6.3 / ...................... 87
-
xiv
6.3.1 ....................................................................................................... 88
6.3.2 ....................................................................................... 94
6.3.3 ............................................................................... 111
6.4 ................................................................................................. 120
7
..................................................................................................... 123
7.1 .............................................................................................................................. 123
7.2 .............................................................. 124
7.3 ....................................................................... 127
7.4 .......................................................................................... 128
7.4.1 .............................................................................................. 128
7.4.2 ........................................................................................................... 130
7.5 ................................................................................................. 134
8
..................................................................................................... 137
8.1 .............................................................................................................................. 137
8.2 .............................. 138
8.2.1 .............................................................................................. 138
8.2.2 ................................................................................... 139
8.3 GPRO ....................................................................................... 147
8.3.1 ................................................................................... 151
8.3.2 ........................................................................... 155
8.3.3 .................................................................................................... 156
8.3.4 , , .. 157
8.3.5 ............................................................................................ 159
8.4 ................................................................................................. 163
9
......... 165
9.1 .............................................................................................................................. 165
-
xv
9.2
........................................................................................................................... 166
9.2.1 ................................................................ 167
9.2.2 ........................................................................................... 168
9.2.2.1 ............................................................................................ 171
9.2.2.2 ............................................................................................. 172
9.2.2.3 ................................................................................. 175
9.3
...................................................... 177
9.3.1 ................................................................ 177
9.3.1.1 ........................................................................................................................... 180
9.3.2 ........................................................................................... 183
9.3.3 ............................................................................... 189
9.4
............................................................................................. 194
9.4.1 ......................................................................... 194
9.4.2 ................................................................ 196
9.4.3 ........................................................................................... 197
9.5 ................................................................................................. 201
10 ......................................................................... 205
10.1 .............................................................................................................................. 205
10.2 .......................................................... 206
10.3 ............................................................................... 208
10.4 ................................................. 210
10.5 ........................................................................................................................ 212
10.5.1 ............................................................... 212
10.5.2 ............................................................................... 212
10.5.3 ......................................................... 213
......................................................................................................................... 215
-
xvi
I .......................................................................................................................... 233
II ........................................................................................................................ 237
III ....................................................................................................................... 241
IV ....................................................................................................................... 245
V......................................................................................................................... 247
-
xvii
1
a
A - s-1
fA ..
a
b
iB
fB ..
wB
m-1 s
c
C J kg-1 K-1
0C
1C
fC ..
gC g kg m3
iC
Kc Kozeny
pC J kg-1 K-1
1 .. .
-
xviii
d m
D m2 s-1
e
E J m-3
aE J mol-1
f ..
f ..
F
.. s-1
0f
cf
f
G
g
,g
h J kg-1
ch W m-2 K
mh m s-1
Ph
j kg s-1 m-2
aEJ s
k W m-1 K-1
K m2
Tk [s-1]
L m
vL ,
2260000
J kg-1
-
xix
m kg
m / kg s-1
MW kg kmol-1
n
n
N
Dn
FN
GN
LN
Pn
pN m-3
RN
SN
tn
o
p Pa
P Pa
DSCP W kg-1
p
PDF
Pr Prandtl
PSD m-3
q W m-2
Q /
.. m-3
-
xx
fQ ..
r s-1
2R
gR , 8314 J kmol-1 K-1
S m2
Sc Schmidt
rs %
0,rs
..
1,rs
sats
t s
T K
u m s-1
U m2 K W-1
V m3
w
x m
X
BX m
y
y y()
z z()
0
-
xxi
m2 s-1
s-1
kg kg-1
H -
J kg-1
t s
m -
kg kg-1
Pa s
kg m-3
Stefan Boltzmann, 5.66910-8 W m-2 K-4
l
aE
g
mix
v
0
ph2
ph3
AH
-
xxii
air
amb
calc
cav
cbw
CC
CO
cond
conv
cr
CS
cyl
dc
dh
DH
diff
ds
E
ES
eff
eq
exp
f
F
fire
fm
g
-
xxiii
G
h
HH
i
in
j
kd Knudsen
l
L
m
M
MC
max
md
min
mix
MO
O
out
p
par
pres
pure
r
rad
ref
s
-
xxiv
S
sl
sp
sph
th
tot
d
CFD Computational Fluid Dynamics
DWS Dry Wall System
GPRO Gypsum PROperties
HETRAN HEat TRansfer ANalysis
KAS Kissinger-Akahira-Sunose
LWC Light Weight Construction
OFW Ozawa-Flynn-Wall
RSS
STR Starink
E
BA -B
-
xxv
-
-
-
xxvi
-
xxvii
1-1 2010 : ) [KARTER
M.J., 2011] ) [FIRE STATISTICS GREAT BRITAIN, 2011] ......................... 3
2-1 ........................................................................ 21
2-2 - : ) )
- .......................................................................................... 22
2-3 ...................... 23
2-4 - ( ) ............................................................ 27
2-5 - ........................................................................................... 29
3-1
: 1) , 2)
3) ............................................................................................................ 34
3-2 ) )
( 3-6)
........................................................................................................................................................ 42
4-1 ) ) ................ 50
4-2 .................................................................... 53
4-3 :
) , ) ) , ................ 55
4-4
............................................................................... 56
4-5
............................................................................................................. 56
4-6 ............................................................................. 57
5-1 ...................................................................................................... 68
5-2 .... 74
5-3 .............................. 75
5-4 ...................................................... 77
5-5 HETRAN ................................. 80
-
xxviii
6-1 ,
, : )
) ............................................................................................. 89
6-2 : ) ,
)
) ,
, ................. 91
6-3 ( )
( ) ,
40L ( = 2 K MIN-1) : ) )
........................................................................................................................................................ 92
6-4
................................................................................................................................ 93
6-5 : ) , )
)
.............................. 95
6-6 : ) , )
)
(
) ................................................................................. 96
6-7 : ) ( =
5 K MIN-1) ) (=10 K MIN-1) .................... 98
6-8 : ) )
.
(EA,LN(A))
,
................................................................................................................................... 99
6-9
N ,
- : )
(5 K MIN-1)
FRD ) (15 K MIN-1)
STR ........................................................................... 102
-
xxix
6-10 Y(): )
(
OFW), )
( FRD) )
.............................................................................................................. 103
6-11 - Y()
: ) )
................................................................................................................. 104
6-12 RSS N
: )
) ............................ 106
6-13 ()
(),
,
( 6-8): )
) (
) ..................................................................................................................... 107
6-14 ()
(),
,
( 6-10)
( ) ....... 110
6-15
: )
) .................................................. 113
6-16
( STR) ....................................................................................................... 114
6-17 ()
(),
,
-
xxx
( 6-14)
( ) ...... 115
6-18
: ) )
......................................................................................... 118
6-19
( STR) ....................................................................................................... 118
6-20 RSS N
................................................................................ 119
6-21 ()
(),
,
,
.... 120
7-1 GKB: ) )
............................................................................................................................................ 124
7-2 ) , ) )
(5MM) ........................................................................................................... 125
7-3 ................................................................... 126
7-4 ) , ) , )
)
........................................................................................................................ 127
7-5 ................................................... 127
7-6 ) CT-METRE
, ) , )
) ..................................................................................... 128
7-7
.................................... 130
7-8 ........................................ 131
7-9 .. 132
-
xxxi
7-10 ) )
............................................................... 134
8-1
( : MANZELLO ET AL., 2007B) ............................................................ 139
8-2 [JEULIN ET AL., 2001] .......................................... 140
8-3 LC/DC
,
( ) ............................................................................................. 142
8-4
,
.......................................................................................................... 143
8-5 (=300C)
,
( X) ........ 145
8-6 (T=900OC)
,
( X) ........ 146
8-7 ) GKB )
...................................... 149
8-8
1, ,
.......................................................... 151
8-9 : ) )
2,
, 8 ............ 152
8-10 : ) ) ,
1,
, , .... 153
-
xxxii
8-11 ) ) 1,
,
............................................................................................................................ 154
8-12 ............... 155
8-13 1,
, .............. 156
8-14 1,
, , 156
8-15 1, ,
, ,
: ) , ) , ) )
..................................................................................... 158
8-16 KNUDSEN .......................... 159
8-17 , , 1
: ) , ) , ,
( ), ) ,
, , (
) ) ............. 161
8-18 , ,
1, .................................................................. 162
9-1 ) ISO 834 )
............................................................................................................ 166
9-2 ( GPRO,
80K MIN-1),
: ) , )
) ....................................... 168
9-3 (
HETRAN), ,
( GPRO,
20K MIN-1),
,
[GHAZI WAKILI ET AL., 2007] .......................................................... 170
9-4 (
HETRAN), ,
-
xxxiii
( GPRO,
20K MIN-1) ,
,
[GHAZI WAKILI ET AL., 2007] .......................................................... 171
9-5 ....... 172
9-6 ( GPRO,
), ,
: ) , ) )
.............................................................................................................................. 173
9-7 (
HETRAN), ,
( GPRO,
), ,
,
[GHAZI WAKILI ET AL., 2007] .......................................................... 174
9-8 (
HETRAN), ,
( GPRO,
80K MIN-1),
,
, [GHAZI WAKILI ET AL., 2007]...................... 176
9-9 ( GPRO,
80K MIN-1),
: ) , )
, ) )
..................................................................................................................................... 179
9-10
................................................................................................................. 183
9-11 (
HETRAN), (
)
, (
GPRO,
80K MIN-1),
, [GHAZI WAKILI ET AL., 2007]...................... 184
-
xxxiv
9-12
, .............................................................. 185
9-13 : ) -
) ,
, ...................................................................... 186
9-14 : ) , )
) , ,
....................................................................................................................... 187
9-15 : ) , )
) , ,
........................................................................................................................................ 188
9-16 (
) ............................... 190
9-17 ( 10K MIN-1): )
) [PAULIK
ET AL., 1992] ................................................................................................................................. 191
9-18 (
GPRO, 10K MIN-1) (
PAULIK ET AL. [PAULIK ET AL., 1992], 10K MIN-1)
: ) , )
, )
, ) , ) , )
, ) ) ....................... 191
9-19 (
HETRAN),
10K MIN-1,
( GPRO) ( PAULIK
ET AL. [PAULIK ET AL., 1992]) ,
, .................. 193
9-20 ................................................................................................. 195
9-21
........................................................................................................................ 195
9-22 .............................................................................. 197
-
xxxv
9-23 (
HETRAN), ,
( GPRO,
, 30K MIN-1
FC=1.58),
: ) )
, ....................................................................... 198
9-24 (
HETRAN), ,
( GPRO,
, 30K MIN-1
FC=1.58),
,
: ) ) ,
...................................................................................................... 199
9-25 (
HETRAN), ,
( GPRO,
, 30K MIN-1
FC=1.58),
,
: ) ) ,
........................................................................................................... 200
-
xxxvi
-
xxxvii
1-1
2010 ..................................................................................................................... 2
1-2 ................................................ 13
3-1 ................................................................................................. 33
3-2 ( 3-16) ...................... 44
4-1 [HAMMILTON & CROSSER, 1962] .... 50
4-2 A P ............ 54
5-1 ................................ 77
6-1 ................................................................ 89
6-2 ................. 93
6-3 ............................................... 94
6-4
................................................................................................................................... 97
6-5
( 3-20) ............................................................................................................................... 99
6-6 - N
.............................................. 100
6-7 - N
Y() .............................................. 105
6-8
................................................................................... 106
6-9 -
......................................................................................................... 108
6-10
,
............................................................................................................. 109
-
xxxviii
6-11
,
[BROWN ET AL., 2000] ............................................................................................ 111
6-12
,
[HURST, 1991] ........................................................................................................ 111
6-13
......................................................... 112
6-14
,
............................................................................................................. 114
6-15
................................................................................................................................... 116
6-16
,
....................................................... 119
8-1 ....... 139
8-2 [GHAZI
WAKILI & HUGI, 2009] ................................................................................................................ 140
8-3 ........................................................ 141
8-4 LC/DC .............................. 143
8-5
............................................................................ 146
8-6
................................................................................................ 147
8-7 ............................. 148
8-8 ................. 148
8-9 .............................................................................................. 150
8-10 ............................................................................................ 150
-
1
1
1
1
, .
,
1050000 [, 2006]. ,
,
. ,
. , ,
[Quintiere, 2006].
.
1%
() [Founti & Cox, 2000, , 2006, Quintiere,
2006]. :
, ,
.
(.. ),
.
2007, 2688340
-
2
2, 63 3,
5 4.
,
,
.
1.1
,
[Yeoh & Yuen, 2009]. 1-1
,
( ), (.. ),
[Karter, 2011] [Fire
Statistics Great Britain, 2011], 2010. , 1-1,
1-1.
,
, .
, ,
, , ,
. ,
,
,
[, 2006].
1-1 2010
(109)
482000 2755 15420 9.7$
215500 310 1590 1.4$
634000 55 710 0.5$
1331500 3120 17720 11.6$
2 " ". on Line. 28/08/2007.
3 " ". in.gr. 27
2007.
4 "Griechenland atmet auf". n-tv.de. 28/08/2007. 28 2007.
-
1
3
69600 325 10142 -
32500 44 520 -
216900 19 472 -
319000 388 11134 -
1-1 2010 : ) [Karter M.J., 2011] )
[Fire Statistics Great Britain, 2011]
1.2
,
(). ,
, ,
, .
, :
.. 71/88 ( 32/17.2.1988) .
5905/15/839/1995 ( 611 /12.7.1995)
,
.
.. 6/96 ( 150 13.3.96) .
.. 3/81 .
-
4
.. 3/81 3/19.1.1981
.
.. 36/95 3/1981
.
,
, [Purkiss,
1996, , 2006]:
,
, , ,
,
(), ,
,
(stability) (integrity)
, , ,
,
: () .
,
() , ,
, .
1.2.1
,
, .
, ,
, , ,
-
1
5
.
:
(, , ..)
( ,
..)
(sprinklers)
,
(, ..) ..
/
(sprinkler),
(wet), (dry), (preaction), (deluge)
(water spray) (fog)
(foam)
, ,
(halon), ..
( )
( , ..)
-
6
( ,
)
1.2.2
, ,
.
, , ,
.
, , .
:
.
,
.
:
,
,
, .
, , :
:
,
, . (
) , :
,
(, ..)
,
-
1
7
:
.
(
):
,
,
..
:
. ( )
, ,
, , ,
:
: ,
.
,
: ,
,
.
: ,
. , 140oC
180oC
:
,
().
,
-
8
.
:
:
,
.
:
,
1.3
(numerical simulation)
-
1
9
,
. , (modeling)
. ,
, , .. ,
, .. , ,
,
[, 2000].
,
,
. ,
,
. , ,
,
,
. , ,
,
.
,
, . ,
, ,
[, 2000].
[, 2000, , 2005]. ,
, , ,
.. ,
, , ,
, ,
.. ,
, ,
, , , .. [,
2005]. ()
.
-
10
1.4
, ()
(light weight constructions) .
,
, ,
,
. (),
, ,
,
[Henkel et al., 2010].
.
, ,
, , ,
[Ghazi Wakili et al., 2007].
(.. ),
( ) .
, ,
.
, ,
,
.
,
,
, .
.
.
,
:
()
-
1
11
,
.
,
, . ,
,
. ,
,
. ,
, ,
.
,
, . ,
,
,
.
. , ,
.
,
. ,
. ,
,
.
-
12
1.5
, .
,
, ,
,
.
:
( 4).
-
.
.
( 6).
, , (
), ,
,
( 7).
.
, ,
. , ,
,
, ( 8).
.
.
,
,
( 9).
-
1
13
1.6
10
. ,
. ,
,
. 2 5
, 6 9
, ,
,
,
.
.
, ,
,
. 1-2 ,
.
1-2
&
2
6
2 2
&
3 4 5
&
&
6 7
8
7
9
2
,
.
-
14
(-, - -),
.
3
(, ). ,
( , -
) .
, ,
.
, ,
4.
. , ,
,
.
5. ,
,
. ,
, . ,
HETRAN (HEat TRansfer ANalysis)
,
.
6
. ,
,
, . ,
,
,
,
, .
-
1
15
7
. ,
,
,
.
8
. ,
. ,
GPRO (Gypsum PROperties), 4
6 ,
.
, 7 .
, 9
,
, HETRAN,
GPRO. ,
,
. ,
,
, ,
. ,
, ,
HETRAN
.
10
,
,
,
.
I
. II
-
16
HETRAN. III
. IV
. , V
, 7 ,
9 .
1.7
:
.. , . , . , .. , . ,
,
, , , 5-8 2007, . 229.
. , . , .,
, 1 , Divani
Caravel, , 21-23 2008, : . 843-854.
. , . , .,
, 1
, Divani Caravel, , 21-23 2008, : . 1473-1484.
. , . , . , . , . ,
, 2008, 6
, , 28 , 2008.
:
D. Kontogeorgos, E. Keramida, M. Founti, Radiative heat transfer modeling of natural gas
diffusion flames, in: Proceedings of 3rd European Combustion Meeting, Chania, Crete,
Greece, 11-13 April 2007.
D. Kontogeorgos, D. Kolaitis, M. Founti, Numerical modeling of heat transfer in gypsum
plasterboards exposed to fire, in: Proceedings of 6th International Conference on Heat
Transfer, Fluid Mechanics and Thermodynamics, Pretoria, South Africa, 27 June to 2 July
2008, paper number: KD1.
-
1
17
I. Mandilaras, D. Kontogeorgos and M. Founti, Effects of PCMs on Gypsum Board
Properties at Elevated Temperatures, in: Proceedings of 9th IIR Conference on Phase-
Change Materials and Slurries for Refrigeration and Air Conditioning, Sofia, Bulgaria, 29
September to 1 October 2010, p. 123-130.
I. Mandilaras, D. Kontogeorgos and M. Founti, Implementation of the Heat Capacity Method
for Modelling the Thermal Performance of Agglomerate Stones Containing PCM, in:
Proceedings of 9th IIR Conference on Phase-Change Materials and Slurries for
Refrigeration and Air Conditioning, Sofia, Bulgaria, 29 September to 1 October 2010, p.
133-141.
D.A. Kontogeorgos and M.A. Founti, Heat and mass transfer phenomena occurring in a
gypsum board exposed to fire conditions, in: Proceedings of First Middle East Conference on
Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Dubai, UAE, 8 10
February 2011, paper number 160.
:
Kontogeorgos, D.A., Keramida, E.P., Founti, M.A., Assessment of simplified thermal
radiation models for engineering calculations in natural gas fired furnace, Int. J. Heat
Mass Transfer 50 (2007) 5260 5268.
D. Kontogeorgos and M. Founti, Numerical investigation of simultaneous heat and
mass transfer mechanisms occurring in a gypsum board exposed to fire conditions,
Applied Thermal Engineering 30 (2010) 1461-1469.
D. Kontogeorgos, I. Mandilaras and M. Founti, Scrutinizing Gypsum Board Thermal
Performance at Dehydration Temperatures, Journal of Fire Sciences 29 (2010) 111-130.
D. Kontogeorgos, K. Ghazi Wakili, E. Hugi and M. Founti, Heat and moisture transfer
through a steel stud gypsum board assembly exposed to fire, Construction and Building
Materials 26 (2012) 746-754.
D.A. Kontogeorgos and M.A. Founti, Gypsum Board Reaction Kinetics at Elevated
Temperatures, Thermochimica Acta 529 (2012) 6-13.
-
18
-
2
19
2
2
2.1
, ,
.
, ,
: 5
.
,
, ,
.
, ,
() . ,
, ,
() [Zalba et al.,
2003]. ,
5 .
-
20
,
.
, , ,
6 ( ),
, ,
, , [Kaasinen, 1992]. ,
,
[Peippo et al., 1991].
,
, .. ,
. ,
,
, [Novozhilov,
2001]. , ,
,
, ,
.
[Feng et al., 2003 , ,
2006].
, ,
. ,
, , ,
-
, ,
, .
, ,
: -,
- -.
( 2-1).
,
, .
6 ().
-
2
21
,
,
,
.
.
2-1
2.2 -
- (micro-scale), nm m,
( 2-2).
:
-
.
,
.
,
,
. ,
- , . ,
,
,
( 2-2).
3 ,
4 .
,
-
22
. ,
. ,
, -
,
6 .
2-2 - : ) ) -
2.2.1
.
/ ,
- ,
. ,
, , , ,
, . , ,
,
, ,
. , -
,
. ,
. ,
(thermal analysis)
(calorimetry),
,
[Haines, 2002].
-
2
23
, [Mackenzie, 1983,
Hemminger & Sarge, 1998]:
()
,
.
()
- , , ..
.
.
2.2.1.1
[Christian & OReilly,
1985, Skoog & Leary, 1992, Haines, 2002] ( 2-3):
2-3
.
, .
,
(.. , , ).
, ,
, ,
.
-
24
2.2.1.2
,
[Doyle, 1961, Coats &
Redfern, 1964, Paulik et al., 1992, Haines, 1995, Haines, 2002], ..
,
..
(reproducibility) .
(Sample): ,
.
(Crucible):
. ,
, . ,
.
(Rate of heating):
.
(thermal lag)
. , ,
.
(Atmosphere):
. ,
(.. ) ,
(.. ).
(Mass of the sample):
, . , ,
.
2.2.1.3
()
, .
. , ,
-
2
25
, ,
.
, ,
.
(), .
,
.
2.2.1.4
() ()
.
, .
, ,
, .
.
,
. , ,
,
. , ,
, ,
.
2.2.2
. ,
.. , ,
..
. , ,
,
.
.
-
26
.
:
, ,
,
.
, .
, . ,
,
. ,
,
.
,
,
.
2.3 -
- (meso-scale),
,
, ( 2-4).
, ,
7,
. (
/ ),
. :
.
-. ,
7 ,
,
.
-
2
27
-,
. , ,
,
.
2-4 - ( )
2.3.1
- .
, ( -),
, , ,
. ,
,
,
, . ,
,
,
.
2.3.2
,
-,
, .
-
28
. ,
, -,
. , -
-.
- .
Navier-Stokes -,
. ,
, ,
-, - ,
, ,
.
2.4 -
- (macro-scale), ,
,
( 2-5). , -
,
, , ,
.
. , ,
- , .
, , -
, , ,
, .
,
, .
-
2
29
2-5 -
-
30
-
3
31
3
3
3.1
,
-
/, .
,
.
: , T, (conversion
fraction), , , P, :
PhfTkdt
dr
3-1
3-1, ,
0 1 (=0 =1
). k(T) (reaction
rate constant), .
f() (reaction model function)
-
32
. , h(P) (pressure term)
.
3.1.1
.
,
,
/ . ,
[Sestak, 1984, Sestak, 2005, Vyazovkin, 2008].
. ,
,
.
,
3-2 [Burnham et al., 2007].
PnPPh
3-2
(reversible) ,
(AsolidBsolid+Cgas),
.
3-3 [Vyazovkin, 2011], P Peq
, .
eqP
PPh 1
3-3
3.1.2
Arrhenius:
TRE
g
a
AeTk
3-4
A Ea - ,
, Rg .
-
3
33
3.1.3
, f(),
[Malek, 1992, ,Vyazovkin & Dollimore, 1996, Vyazovkin & Wight, 1999,
Brown, 2001, Vyazovkin et al., 2011]. 3-1
8.
3-1
f() g()
(Power Law)
Pn n(n-1)/n 1/n
(Reaction order)
Rn (1-)n -ln(1-), n=1
[(1-)(1-n)-1]/(n-1), n1
Avrami-Erofeev An n(1-)[-ln(1-)](n-1)/n [-ln(1-)]1/n
-
(One-dimensional
diffusion)
D1 1/2-1 2
-
(Two-dimensional
diffusion)
D2 [-ln(1-)]-1 (1-)ln(1-)+
-
(Three-dimensional
diffusion)
D3 3/2(1-)2/3[1-(1-)1/3]-1 [1-(1-)1/3]2
(Contracting model)
Cn n(1-)(n-1)/n 1-(1-)1/n
n=2, (contracting cylinder)
n=3, (contracting sphere)
, ,
: ,
( ) [Vyazovkin et al., 2011],
, , , d/dt, ,
8 ,
.
-
34
.
,
. , k(T),
, h(P), 3-1,
,
, f().
, , k(T), ,
f(), ,
, h(P).
3-1
.
3-1
: 1) , 2) 3)
, ,
, ,
(Power Law) ( 3-1). ,
,
. (Reaction Order)
(Diffusion) ( 3-1). , ,
, .
, ,
.
-
3
35
Avrami-Erofeev ( 3-1)
.
3.2
[Brown et al., 2000]:
( Arrhenius )
, Arrhenius, A Ea
, f(),
. ,
3-1 (Hemminger & Sarge, 1998, Galwey
& Brown, 1999]. , 3-1
, ,
, [Brown et al., 2000].
, ,
[Brown et al., 2000,
Vyazovkin et al., 2011] 3-5:
RN
r
rrdt
dw
dt
d
1
3-5
NR ,
, wr r
, (wr=1, r=).
3-1 :
fAedt
dr
TR
E
g
a
3-6
(differential kinetic methods), :
tTR
E
dteAf
dg g
a
00
3-7
-
36
(integral kinetic methods). g(),
( 3-1).
, , [Doyle, 1962, Coats & Redfern, 1964, Ozawa, 1965,
Abdel Aziz Khalil, 1982, Elder, 1985, Strydom et al., 1995, Hudson-Lamb et al., 1996, Aybers,
1998, Erdogan et al., 1999, Sanders & Gallagher, 2002, Demir et al., 2003, Seungdo et al., 2004,
Elbeyli & Piskin, 2004].
( 3-6 3-7)
,
[Vyazovkin et al., 2011]. ,
, ()
(),
( ). , ,
,
, ,
9 .
,
, :
(model-fitting method)
(model-free method).
Arrhenius, ,
Arrhenius
. ,
. ,
. ,
,
=0.1-0.9 =0.05-0.95.
9
, .
-
3
37
.
3.2.1
(model-fit method) ,
.
, Arrhenius
.
,
.
, . ,
: .
Arrhenius (A Ea),
, . ,
, ,
.
,
, ,
Arrhenius.
, ..
() (
). ,
, . , ,
Arrhenius
[Vyazovkin & Dollimore, 1996,
Vyazovkin, 1997, Vyazovkin, & Wight, 1999, Vyazovkin et al., 2011].
10 [Brown et al., 2000, Vyazovkin et al., 2011].
,
10 3-5.
-
38
.
3.2.1.1
.
,
Arrhenius.
(.. , ,
..).
,
.
,
:
;
(
) (
), ,
.
.
, Ea,
, (. );
: , (.
3.1.3);
, , ,
( 3-1).
3.2.1.2
(linear model-fitting method)
,
( 3-6) .
-
3
39
3-6
, 1/.
[Vyazovkin et al., 2011]:
oncf 1
3-8
3-8
( 3-1),
c, n o [Perez-Maqueda et al., 2006]. , ,
3-8 3-6
:
TR
EcA
dt
d
g
a
on
ln
1
1ln
3-9
3-9
(
) n
o
.
,
n o.
,
, Ea, ln(cA),
,
. n o
, c, n o
. , c,
- , A. n o
, c A
. , c ,
- , ln(cA)ln(A).
3.2.1.3
(non-linear model-fitting
method)
.
-
40
Arrhenius, ,
(residual sum of squares), RSS,
,
3-10.
min1
2
exp
N
jcalcjj
yyRSS
3-10
y
, exp calc
, . RSS
( ) .
3.2.2
(model-
free isoconversional method) ,
,
[Friedman, 1964, Ozawa, 1965, Flynn & Wall, 1966].
3-6
, 1/T, :
111
lnlnln
T
f
T
Tk
T
dtd
3-11
.
3-11 , ,
(. =.), f() ,
,
:
g
a
R
E
T
dtd
1
ln
3-12
3-12,
, ,
-
3
41
11,
, , .
,
,
: (differential isoconversional methods)
(integral isoconversional methods) .
,
( )
(). 3-12,
.
, ,
, =0.05-0.95, 0.05
[Vyazovkin et al., 2011].
,
.
, ,
,
3-6 .
.
,
.
3.2.2.1
Friedman [Friedman, 1964],
3-13:
TR
EAf
dt
d
g
alnln
3-13
3-13 3-6
11 , , ,
.
-
42
. 3-2
, , , T,
, .
, =0.
ln(d/dt) 1/T ( 3-13), ,
, 3-2.
(ln(d/dt),1/T)
.
( 3.2.2)
.
,
.
3-2 ) )
( 3-6)
,
, , ,
(. 3.2.2.2). , , ,
. ,
(.. ),
, , ,
[Starink,
2003]. ,
[Sbirrazzuoli, 2007]. ,
(.. )
, ()
-
3
43
. , ,
.
3.2.2.2
3-7.
,
, :
tAeg TRE
g
a
3-14
3-14, 3-16:
TR
E
A
gt
g
alnln
3-15
, , , =0 (
3-2), ln(t) 1/ ( 3-15),
, ,
3-1. (ln(t),1/T)
.
, 3-7
.
(.. Taylor) .
3-7
,
[Starink, 2003]:
TR
ECConst
T g
aiBi
ln
3-16
Bi Ci
3-7. 3-2
3-16, .
Ozawa-Flynn-Wall (OFW) , Kissinger-Akahira-
Sunose (KAS) Starink (STR) .
-
44
3-2 ( 3-16)
Bi Ci
Ozawa-Flynn-Wall (OFW) 0.00 1.0520 [Ozawa, 1965, Flynn & Wall, 1966]
Kissinger-Akahira-Sunose
(KAS)
2.00 1.0000 [Akahira & Sunose, 1971]
Starink (STR) 1.92 1.0008 [Starink, 2003]
3-7. , , 3-7
[Vyazovkin & Dollimore, 1996, Vyazovkin, 1997, Vyazovkin, 2001].
, , (
)
:
N
i
N
ij ja
iaa
tTEJ
tTEJE
1 ,
,
3-17
i j ,
J12 :
ttTR
E
a dtetTEJg
a
0
,
3-18
3-17
( 3.2.2), ,
, .
3-7
. , ,
[Vyazovkin &
Sbirrazzuoli, 2006, Vyazovkin, 2008],
20-30%,
[Vyazovkin, 2001].
Friedman,
12 J .
-
3
45
:
t
t
tT
a dttTEJ
-
g
a
R
E-
e,
3-19
3-19 , ,
.
3.2.3 -
,
,
- .
,
3-6.
.
,
3-5, .
. ,
,
- :
.
3.2.3.1
(compensation effect)
(.. ).
,
3-10,
- , Ei Ai, .
(..
), ,
(Ei,Ai).
-
46
3-20,
[Vyazovkin et al., 2011].
baEA ii ln
3-20
(Ei,Ai)
3-20. ,
(. 3.2.2), Ea,
3-20 - , A ( 3-21),
.
baEA a ln
3-21
- ,
( 3-22)
( 3-23) .
tTR
E
dteAg ga
0
3-22
TR
E
g
a
Aedt
df
1
3-23
3-22 3-23
t (d/dt), ,
, g() f().
g() f() ( 3-1)
.
3.2.3.2
(master plots) :
y() z() [Malek, 1992].
,
(. 3.2.2), y()
z():
-
3
47
Afedt
dy RT
Ea
3-24
gfTdt
dz
2
3-25
y() z(), , ,
g() f() ( 3-1).
y(), - ,
.
, -
3-26.
max
max2max
TR
E
g
a g
a
efTR
EA
3-26
max
, .
-
48
-
4
49
4
4
4.1
, ,
, , ,
.
13 , ,
.
, , ,
, ,
( 4-1). 14
( )
( 4-1).
, .. , , ..
,
- ,
13 , .
14 3.510-4m,
>1m.
-
50
. , , ,
, ,
.
,
, .
4-1 ) )
4.2
, ,
,
, , :
par
sph
S
S
4-1
. 4-1
[Hammilton & Crosser, 1962].
4-1 [Hammilton & Crosser, 1962]
,
1.00
5:1 0.68
10:1 0.57
, .. [Jeulin et al., 2001],
-
4
51
, Lcyl dcyl,
[Korte & Brouwers, 2010]. , , ,
4-2.
2
1
1
4
632
cyl
cylcyl
cyl
d
Ld
L
4-2
4.2.1
(porosity)
( ), VF, , V, .
V
VF
4-3
,
4-4, VS
sr .
r
N
s s
s
S
sV
m
V
VV
S
11
V
V
0
1F
4-4
4.2.2
(saturation)
, VL, , VF.
F
Lsat
V
Vs
4-5
4.2.3
(, Probability Density Function) ,
(, Pore Size Distribution) [Assouline &
Rouault, 1997, Rouault & Assouline, 1998].
, [Beck & Schultz, 1972, Collins & Ramirez, 1979,
-
52
Nakao & Kimura, 1981, Deen et al., 1983, Tam & Tremblay, 1993, Krajewska & Olech, 1996,
Assouline & Rouault, 1997, Rouault & Assouline, 1998],
[Du Bois & Stoupel, 1976, Deen et al., 1983, Aimar et al., 1990, Tam & Tremblay, 1993,
Mochizuki & Zydney, 1993, Assouline & Rouault, 1997, Rouault & Assouline, 1998, Bowen &
Welfoot, 2002], [Mochizuki & Zydney, 1993], ,
Weibull Rayleigh [Deen et al., 1983, Derjani-Bayeh & Rodgers, 2002]
[Wendt et al., 1976, Mason et al., 1980, Wendt & Klein, 1984].
,
, ,
.
,
, ,
[Bowen & Welfoot, 2002, Derjani-
Bayeh & Rodgers, 2002].
4-6, dp,m l
.
2
2
,
2
log
2
1l
mp
p
d
d
lp
p ed
dPDF
4-6
, l,
4-7, , l, dp,th
(maximum pore diameter threshold) .
thp
mpthp
l
l
dC
ddC
C
C
,5
1
2,,
0
21
1
0
210
2
loglog
ln
4-7
dp dp-
dp dp+dp, dp0 4-8.
ppp dPDFNdPSD
4-8
Np
, 4-9.
-
4
53
max,
min,
max,
min,
p
p
p
p
d
d
ppFp
p
d
d
ppFpF
dddVdPDF
VNdddVdPSDVV
4-9
4.3
:
.
, : ,
.
4.3.1
(tortuosity factor)
, Lsl, , L,
4-10 [Dias et al., 2006, Matyka et al., 2008].
1L
Lsl
4-10
4-2
.
,
: ( 4-11) [Iversen & Jorgensen, 1993, Koponen et al., 1996,
Salem & Chilingarian, 2000, Blondeau et al., 2003], ( 4-12) [Archie, 1942,
-
54
Millington & Quirk, 1961, Klusacek & Schneider, 1981, Huizenga & Smith, 1986, Zhang &
Bishop, 1994, Mota et al., 1998, Mota et al., 2001, Dias et al., 2006]
( 4-13) [Weissberg, 1963, Ho & Strieder, 1981, Tsai & Strieder, 1986, Comiti & Renaud,
1989, Barrande et al., 2007, Matyka et al., 2008] .
pa
4-11
p
4-12
ln1 p
4-13
4-2 a p
a p
( 4-11)
3 -2 Iversen & Jorgensen, 1993
4 -3 Iversen & Jorgensen, 1993
2.2271 -1.12 Blondeau et al., 2003
( 4-12)
1/3 Millington & Quirk, 1961
0.5 Zhang & Bishop,1994
Mota et al., 1997
0.4 Mota et al., 1998
( 4-13)
0.5 Weissberg, 1963
Ho & Strieder, 1981
1 Tsai & Strieder, 1980
2/3 Tsai & Strieder, 1980
0.86 Comiti & Renaud, 1989
1.66 Barrande et al., 2007
0.77 Matyka et al., 2008
a p
. 4-2 a p
.
4-3
, .
, ,
, . ,
-
4
55
,
(0 1). ,
,
,
, (, Least Square
Method). .
4-3 : ) , )
) ,
4-4
,
4-14, calc exp
, , N .
N
i
calctote1
2exp
4-14
-
56
4-4
,
, p=0.601859,
, .
4-5
( 4-13, p=0.601859), .
4-5
4.3.2
(permeability)
.
.
, ,
-
4
57
, , , Ssp,
[Koponen et al.,
1997, Matyka et al., 2008].
:
2
,
spS
gK
4-15
Kozeny ( 4-16) Kozeny ( 4-17),
[Bear, 1972].
2
3
spKScK
4-16
22
3
spK ScK
4-17
cK Kozeny
(capillaries) ( 4-2),
2 12 [Scheigegger, 1957, Han, 1969, Bear, 1972].
4-6
,
(interconnected
pores) ( 4-6). ,
-
58
( dead-end pore)
( occluded pore)
( 4-6).
,
(percolation threshold), th , ,
Kozeny.
.
(effective porosity), eff ,
15
[Koponen et al., 1997]:
xxx thefftheffeffeff 12 ,2,3,
4-18
ththx 1 eff,
. : 1 dd effeff 1
0eff th .
, , 4-15 4-16
:
2
3
spK
eff
ScK
4-19
22
3
spK
eff
ScK
4-20
, ,
[Koponen et al., 1997]:
ln,parh
Dsp
d
nS
4-21
15 (>0.6) ,
.
-
4
59
dh,par=nDVpar/Spar , nD
, Vpar Spar ,
.
,
4-22, Kref=(Vpar/Spar)2/cK.
2
2
ln
effeffrefKK
4-22
(>0.6)
, 4-22 :
2ln
refKK
4-23
,
Kref.
Kref=(dcyl)2/cK.
4.3.3
(diffusion)
, , Knudsen
[Treybal, 1981, Ruthven, 1984, Incropera &
DeWitt, 1985, , 1993, Masel, 1996].
, .
, Knudsen
. ,
,
10-7-10-9 m2/s [Treybal, 1981].
Knudsen
.
Knudsen , ,
,
(effective diffusion coefficient) [, 1993]:
effkdeffmdeff DDD ,,
111
4-24
-
60
Dmd,eff Dkd,eff
Knudsen, .
4-25 [Weissberg, 1963, Mota et al., 1998, Blondeau et al., 2003]. Dm
.
meffmd DD ,
4-25
Knudsen
4-26 [, 1993].
mfpeffkd udD ,,3
1
4-26
dp uf,m
f, 4-27.
21
,,
8
g
g
mgmfMW
TRuu
4-27
4.4
(effective density) ,
,
, .
,
. , ,
, ( ),
.
r
N
s
s
N
l
l
r
SLeff
sV
mm
sV
mm
V
m
SL
11 0
11
0
4-28
4.5
(effective thermal conductivity)
, , , ,
-
4
61
, ,
.. [Horai & Simmons, 1969, Hsu et al., 1994, Hsu et al., 1995,
Clauser & Huenges, 1995, Kaviany, 1995]. (..
, ..),
,
, .
( 23 )
. , ,
, ,
,
[Ahmed & Hurst, 1997, Korte & Brouwers, 2010].
Ahmed & Hurst
[Ahmed & Hurst, 1997] ( 4-29), kS, kL kG
, , , ssat
( 4-5), nt ,
.
tttt nnGsatnLsatnSpheff kskskk1
3, 11
4-29
, ,
, ( S-G)
( S-L). ,
4-30 [Somerton et al., 1974].
GSpheffLSpheffsatGSpheffpheff kkskk ,2,,2,,2,3,
4-30
,
[Hamilton & Crosser, 1962, Zehner & Schlunder, 1970, Hsu et al., 1994,
Hsu et al., 1995, Kaviany, 1995, Cernuschi et al., 2004, Carson et al., 2005, Cote & Konrad,
2005, Yu et al., 2006, Do et al., 2007, Cote & Konrad, 2009].
Maxwell [Maxwell, 1873], ,
( )
( ).
[Carson et al.,
-
62
2005], .
, Maxwell [Hadley, 1986] (
4-31).
12
2112
111
11
2
0
00
0002,
FS
FSFS
FS
FSFpheff
ff
ffkk
4-31
S-F
, kS/kF, 0 (degree of consolidation) f0
.
4-32.
580.0298.0,298.0778.6084.1log
298.00827.0,0827.0154.3405.0log
0827.00,898.4log
0
0
0
4-32
4-33 [Korte &
Brouwers, 2010] 4-34 [Verma et al., 1991].
3
2
12
2
3
20
FS
FSf
4-33
31
3
0ln
FS
f
4-34
,
.
[Burgoyne & Weinberg, 1953, Mathur et al., 1967],
4-35, Xf f.
F
F
N
f f
f
N
f
ffF
k
XkXk
1
1
15.0
4-35
, ,
( 4-36)
( 4-37) ( 4-38)
-
4
63
[Clauser & Huenges, 1995, Cote & Konrad, 2005].
,
.
SN
s
ssS kXk1
4-36
SN
s s
s
S
k
Xk
1
1
4-37
S
s
N
s
XsS kk
1
4-38
,
. ,
[Kingery et al., 1976, Harmathy, 1988, Ahmed & Hurst, 1997, Szelagowski et
al., 1999, Yu et al., 2006, Do et al., 2007].
, keff,rad, 4-39, G
(2/3 1
).
pradeff dTGk3
, 4
4-39
,
, 4-40.
radeffpheffeff kkk ,3,
4-40
4.6
()
r :
-
64
rrr rH
dt
dh
4-41
Hr
r, rr r.
:
rrrrr
rrr
r rH
dT
dhrH
dt
dT
dT
dhrH
dt
dh
4-42
4-42 , Cr, r,
(effective specific heat),
:
dTCdh rr
4-43
, ,
:
rrr
rHC
4-44
,
,
[Harmathy, 1983]:
RR N
r
rrref
N
r
rrefeff
rHCCCC
11
4-45
-
5
65
5
5
5.1
,
, , .
, , ,
, ,
. ,
, , ..,
, -16
,
, .
,
,
, ,
, .
16 ,
.
-
66
( )
. -
, / ,
,
[Pham, 2006].
.
:
.
,
(
), .
,
, 17. , ,
,
- ,
, ,