PhD presentation Stepan Sutula

of 101 /101
Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 1/72 Low-Power High-Resolution CMOS Switched-Capacitor Delta-Sigma Analog-to-Digital Converters for Sensor Applications Stepan Sutula 1 Directors: Dr. Michele Dei 1 , Dr. Carles Ferrer Ramis 1,2 , Dr. Francesc Serra Graells 1,2 1 Integrated Circuits and Systems (ICAS) Institut de Microelectrònica de Barcelona, IMB-CNM(CSIC) 2 Dept. of Microelectronics and Electronic Systems (DEMISE) Universitat Autònoma de Barcelona (UAB) November 5, 2015 Stepan Sutula

Embed Size (px)

Transcript of PhD presentation Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 1/72

    Low-Power High-Resolution CMOSSwitched-Capacitor Delta-SigmaAnalog-to-Digital Converters

    for Sensor Applications

    Stepan Sutula1

    Directors: Dr. Michele Dei1, Dr. Carles Ferrer Ramis1,2, Dr. Francesc Serra Graells1,2

    1Integrated Circuits and Systems (ICAS)Institut de Microelectrnica de Barcelona, IMB-CNM(CSIC)

    2Dept. of Microelectronics and Electronic Systems (DEMISE)Universitat Autnoma de Barcelona (UAB)

    November 5, 2015

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 1/72

    1 Introduction

    2 -Modulator Architectures

    3 Low-Power CMOS Switched-Capacitor Circuits

    4 Practical M Design in a 0.18-m CMOS Technology

    5 Experimental Results

    6 Conclusions

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 1/72

    1 Introduction

    2 -Modulator Architectures

    3 Low-Power CMOS Switched-Capacitor Circuits

    4 Practical M Design in a 0.18-m CMOS Technology

    5 Experimental Results

    6 Conclusions

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 2/72

    General ADC System

    I Interface between physical and digital worlds

    I Integration with the input sensor using low-cost CMOS technologies

    I Maximum precision required for target application

    I Low power consumption compatible with local energy storage, remotepower or energy harvesting

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 3/72

    Quantization

    I Number of bits:

    N = log2(M )

    I Quantization step:

    = Vmax Vmin2N 1

    I Quantization noise PSD:

    S(f ) =1fs

    1

    /2

    /2

    2q dq

    = 2

    12fs

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 4/72

    ADC State of the Art

    20 30 40 50 60 70 80 90 100 110 120100

    101

    102

    103

    104

    105

    106

    107

    FOMS = SNDR + 10 log( BW

    P

    ) 160 dB

    170 dB

    180 dB

    SNDR = 10 log PsP [dB]

    P/f sn

    yq[p

    J]

    FlashFoldingPipeline

    SARCT SC

    Schreier FOM

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 4/72

    ADC State of the Art

    20 30 40 50 60 70 80 90 100 110 120100

    101

    102

    103

    104

    105

    106

    107

    FOMS = SNDR + 10 log( BW

    P

    ) 160 dB

    170 dB

    180 dB

    SNDR = 10 log PsP [dB]

    P/f sn

    yq[p

    J]

    FlashFoldingPipeline

    SARCT SC

    Schreier FOM

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 5/72

    ADC State of the Art

    Architecture Resolution Bandwidth Latency AreaFlash Low High Low HighFolding Medium Medium-high Low HighPipeline Medium-high Medium-high High MediumSAR Medium-high Low-medium Low Low High Low High Medium

    I Lower bandwidth and higher latency allowed

    I -architecture simplicity and higher resolution preferred

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 5/72

    ADC State of the Art

    Architecture Resolution Bandwidth Latency AreaFlash Low High Low HighFolding Medium Medium-high Low HighPipeline Medium-high Medium-high High MediumSAR Medium-high Low-medium Low Low High Low High Medium

    I Lower bandwidth and higher latency allowed

    I -architecture simplicity and higher resolution preferred

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 6/72

    Objectives and Scope

    I Working hypotheses:

    Low-cost calibration-free high-resolution ADCs can be obtained instandard CMOS technologies

    Low-current circuits are preferred over low-voltage designtechniques for higher power savings

    Competitive mixed-signal IC design frameworks can be conductedusing open-source tools

    I Low-power high-resolution -ADC demonstrator to verify thehypotheses

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 6/72

    1 Introduction

    2 -Modulator Architectures

    3 Low-Power CMOS Switched-Capacitor Circuits

    4 Practical M Design in a 0.18-m CMOS Technology

    5 Experimental Results

    6 Conclusions

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 7/72

    General -ADC Architecture

    I Oversampling ratio:

    OSR = fsfN= fs2 BW

    I Quantization-noise in-band power:

    P =BW

    BW

    S(f ) df =2

    12 OSR

    I Antialiasing filtering relaxed

    J I Overclocking needed

    I -modulator noise shapingI Reduced impact of the block

    imperfections on the ADCperformance

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 8/72

    First-Order Modulator

    I One-sample-delay integrator:

    H1(z) =z1

    1 z1

    J Non-linear system due to thequantization effects

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 8/72

    First-Order Modulator

    I Equivalent linear-model simplification

    I Signal and noise transfer functions:

    STF(z) = Vout(z)Vin(z)= 11 + (aqH1(z))1

    NTF(z) = Vout(z)Vqn(z)= 11 + aqH1(z)

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 9/72

    Lth-Order ModulatorI Resolution-vs-OSR (L + 0.5)-bit/octave increase

    I Integrator overload prevention

    J Weakened loop stability

    I Careful robustness verification needed

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 10/72

    First-Order Feedforward -ModulatorI Quantization-error processing

    only

    I Integrator-outputsignal-headroom relaxation

    I Signal and noise transfer functions:

    STF(z) = Vout(z)Vin(z)= 1

    NTF(z) = Vout(z)Vqn(z)= 11 + aqH1(z)

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 11/72

    Lth-Order Feedforward ModulatorI Single negative-feedback path

    I Power efficiencyJ Extra adder circuit

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 12/72

    Multi-Bit QuantizationI Resolution increase

    I OSR reduction

    J Quantizer non-linearity

    J Calibration/DEMneeded

    J Feedforward-M-implementation issues

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 13/72

    Single-Bit QuantizationI Inherent linearity

    I Quantizer-designsimplification

    I Benefits for thefeedforward-Mimplementation: Reduced

    quantization time Passive adder

    J Oversampling

    J First-stageinstantaneous erroramplitude

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 14/72

    High-Level ModelingI CPU-simulation-time

    reduction

    I Solution to themathematical-analysisdifficulties

    I Number of samples tosimulate:

    nsamp = np OSR2 BW

    fin

    I Signal-to-quantization-noise ratio:

    SQNR = 10 log PsP

    103 104 105 106200

    150

    100

    50

    0

    40 dB/dec

    Frequency [Hz]

    Powe

    rspe

    ctra

    lden

    sity

    [dB F

    S/bi

    n]

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 14/72

    High-Level ModelingI CPU-simulation-time

    reduction

    I Solution to themathematical-analysisdifficulties

    I Number of samples tosimulate:

    nsamp = np OSR2 BW

    fin

    I Signal-to-quantization-noise ratio:

    SQNR = 10 log PsP

    103 104 105 106200

    150

    100

    50

    0

    40 dB/dec

    Frequency [Hz]

    Powe

    rspe

    ctra

    lden

    sity

    [dB F

    S/bi

    n]

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 15/72

    High-Level Modeling

    I Input-amplitudesweep

    I Input-full-scaleadjustment

    J Model coveringsignal-quantizationerror and overloadingonly

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 16/72

    Circuit Non-Idealities

    I Sampling thermal noise:

    Pn =2kBT

    Cs1 OSR

    I Component technologymismatch

    I Integrator settling error

    I Jitter noise:

    Pj =V 2s8

    (2 BW j)2

    OSR

    I Reference noise

    103 104 105 106200

    150

    100

    50

    0

    40 dB/dec

    Frequency [Hz]

    Powe

    rspe

    ctra

    lden

    sity

    [dB F

    S/bi

    n] No thermal noiseWith thermal noise

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 17/72

    Demonstrator Target Specifications

    I 50-kHz bandwidth

    I 16-bit resolution

    I Standard CMOS technology

    I No supply bootstrapping

    I No analog calibration

    I No digital compensation

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 17/72

    1 Introduction

    2 -Modulator Architectures

    3 Low-Power CMOS Switched-Capacitor Circuits

    4 Practical M Design in a 0.18-m CMOS Technology

    5 Experimental Results

    6 Conclusions

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 18/72

    Low-Power Switched-Capacitor Design

    Low-Voltage Approach

    I Bulk-driven OpAmpsI Internal supply multipliersI Inverter-based OpAmpsI Switched OpAmps

    I Nominal-voltage downscaling,one-cell-battery compatibility

    J Moderate power savings

    Low-Current Approach

    I Telescopic diff. pairs withLCMFB

    I Dynamic biasing by RC biastees

    I Hybrid-Class-A/ABI Adaptive biasing

    I Higher power savingsJ Process and temperature

    sensitivity

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 18/72

    Low-Power Switched-Capacitor Design

    Low-Voltage Approach

    I Bulk-driven OpAmpsI Internal supply multipliersI Inverter-based OpAmpsI Switched OpAmps

    I Nominal-voltage downscaling,one-cell-battery compatibility

    J Moderate power savings

    Low-Current Approach

    I Telescopic diff. pairs withLCMFB

    I Dynamic biasing by RC biastees

    I Hybrid-Class-A/ABI Adaptive biasing

    I Higher power savingsJ Process and temperature

    sensitivity

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 19/72

    Variable-Mirror Amplifier Family

    I Two complementary diff. pairsI Dynamic current mirrorsI Separate Class-AB controlI Partial positive feedbackI CMFB control through the

    NMOS-pair tail

    I Gain improvement by theoutput cascode transistors

    I No need for the Millercompensation capacitors

    I High-peak Class-AB currentsonly in the output transistors

    [1] S. Sutula, M. Dei, L. Ters, and F. Serra-Graells, Class-AB Single-StageOpAmp for Low-Power Switched-Capacitor Circuits,ISCAS 2015 Awarded.

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 20/72

    Variable-Mirror Amplifier Family

    I In strong inversion:

    Ionp =B

    A + B

    (An2

    Vcp +

    Iinp

    )2

    I In weak inversion:

    Ionp =B

    A + Be

    VcpUT Iinp

    I Desired Class-AB behavior:

    Ioutp 0 Vcp Vxp Ionp Iinp

    Ioutp 6 0 Vcp 6 Vxp

    {Ionp Iinp

    Ionp Iinp

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 21/72

    Type I

    I Positive-feedback cross-coupled B-B pair for the Class-AB operation

    I Negative-feedback crossing transistor C as a Class-AB limiter

    D.=

    A BA + B

    E.=

    A B CA + B + C

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 21/72

    Type I

    I Positive-feedback cross-coupled B-B pair for the Class-AB operation

    I Negative-feedback crossing transistor C as a Class-AB limiter

    D.=

    A BA + B

    E.=

    A B CA + B + C

    Imax '(1 +

    DC

    )Itail

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 22/72

    Type-I Analysis: Insensitivity to n and

    I In strong inversion:

    Iinp =B

    (2

    IonnD

    IonpD

    +

    IinpA

    )(IonpD

    IinpA

    )

    + C

    (2

    ItailE

    IonpD

    IonnD

    +

    IinpA

    +

    IinnA

    )

    (IonpD

    IonnD

    IinpA

    +

    IinnA

    )

    Iinn =B

    (2

    IonpD

    IonnD

    +

    IinnA

    )(IonnD

    IinnA

    )

    + C

    (2

    ItailE

    IonnD

    IonpD

    +

    IinnA

    +

    IinpA

    )

    (IonnD

    IonpD

    IinnA

    +

    IinpA

    )

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 23/72

    Type-I Analysis: Insensitivity to UT

    I In weak inversion:

    Iinp =BD

    Ionn

    (1

    DA

    IinpIonp

    )+

    C DA E

    Itail

    (IinpIonp

    IinnIonn

    )

    Iinn =BD

    Ionp

    (1

    DA

    IinnIonn

    )+

    C DA E

    Itail

    (IinnIonn

    IinpIonp

    )

    I Independence from technology and temperature

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 24/72

    Type I with Class-AB Smoother

    I Low-levelcommon-modecurrent injection

    I Instability preventionunder a highClass-AB modulation

    J Need for extra currentsources

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 25/72

    Type III Auto-biased Class-AB limiter

    I Self-latch prevention

    I Simple sizing procedure

    F .= A(B+C)A+B+C

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 25/72

    Type III Auto-biased Class-AB limiter

    I Self-latch prevention

    I Simple sizing procedure

    F .= A(B+C)A+B+C

    Imax '1+AC

    1+ AB+CItail > Itail

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 26/72

    Type-II Analysis: Insensitivity to n and

    I In strong inversion:

    Iinp =

    [2

    (B

    IonnF

    + C

    IonpF

    ) (B + C)

    (IonpF

    IinpA

    )]

    (IonpF

    IinpA

    )

    Iinn =

    [2

    (B

    IonpF

    + C

    IonnF

    ) (B + C)

    (IonnF

    IinnA

    )]

    (IonnF

    IinnA

    )

    I Independence from technology and temperature

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 27/72

    Type-II Analysis: Insensitivity to UT

    I In weak inversion:

    Iinp =(BF

    Ionn +CF

    Ionp

    )(1

    FA

    IinpIonp

    )

    Iinn =(BF

    Ionp +CF

    Ionn

    )(1

    FA

    IinnIonn

    )

    I Independence from technology and temperature

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 28/72

    Type-II DC Transfer Curve

    I ParameterizedB/C for A=8

    I Matching betweenanalytical andsimulated results

    I Strong inversion

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 28/72

    Type-II DC Transfer Curve

    I ParameterizedB/C for A=8

    I Matching betweenanalytical andsimulated results

    I Weak inversion

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 29/72

    Cascode Biasing

    I Series/parallelassociation

    I Saturation-edgebiasing

    I Valid for all MOSFETinversion levels

    I Optimum output fullscale for a givensupply voltage

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 30/72

    SC-Integrators

    J Traditional OpAmp use

    I OpAmp in interleaving

    I Switched OpAmp critical switches

    50-% duty cycle

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 31/72

    SOA-Integrator Operation

    I Samplingphase

    I Integrationphase

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 32/72

    Charge-Injection Minimization

    I Delayed disconnection in thesignal-dependent paths

    I Signal-independent chargeinjection

    I Rejected by CMFB

    J Extra switching phases

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 33/72

    SVMA OperationI Reduced set of

    transistor matchinggroups

    I Full CMOSimplementation

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 33/72

    SVMA OperationI Reduced set of

    transistor matchinggroups

    I Off-state network

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 33/72

    SVMA OperationI Reduced set of

    transistor matchinggroups

    I On-state network

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 33/72

    1 Introduction

    2 -Modulator Architectures

    3 Low-Power CMOS Switched-Capacitor Circuits

    4 Practical M Design in a 0.18-m CMOS Technology

    5 Experimental Results

    6 Conclusions

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 34/72

    IC Design Environment

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 35/72

    High-Level Model

    Coefficient a1 a2 a3 a4 c1 c2 c3 c4Value 0.2 0.4 0.1 0.1 1 1 1 2

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 36/72

    High-Level Simulation

    103 104 105 106200

    150

    100

    50

    0

    80 dB/dec

    Frequency [Hz]

    Powe

    rspe

    ctra

    lden

    sity

    [dB F

    S/bi

    n]

    100 50 00

    20

    40

    60

    80

    100

    120

    Input Amplitude [dBFS]

    SQN

    R[d

    B]I 136 OSR, 13.6 MS/s

    I 13.28-kHz input frequency

    I 117-dB maximum SQNR

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 37/72

    Non-Idealities

    0 5 10 150

    20

    40

    60

    80

    100

    120

    mism [%]

    SQN

    Rm

    ax,w

    orst

    [dB]

    0 0.05 0.1 0.15 0.280

    90

    100

    110

    120

    sett [%]SQ

    NR

    max

    [dB]

    I 8.25-% maximum coefficientmismatch

    I 0.035-% maximum settling error

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 38/72

    M SC SchemeI Fully-differential I No bootstrapping I No output switches

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 38/72

    M SC Scheme

    Capacitance Value [pF] Capacitance Value [pF] Capacitance Value [pF]Cfb 21.16 Cff0 0.92Cs1 42.32 Ci1 211.6 Cff1 0.92Cs2 3.68 Ci2 9.2 Cff2 0.92Cs3 0.92 Ci3 9.2 Cff3 0.92Cs4 0.92 Ci4 9.2 Cff4 1.84

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 39/72

    M Clock GenerationI Digital masking scheme to minimize the number of analog switches

    I Delayed-phase generation

    I 14 outputs

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 40/72

    M Operation

    I Integrator initialization

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 40/72

    M Operation

    I Regular operation (phase A)

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 40/72

    M Operation

    I Regular operation (phase B)

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 41/72

    SVMA Design

    I Equivalent-conditionextraction

    I Design-time minimization

    Parameter SVMA1 SVMA2 SVMA3,4 UnitsCssi 63.48 3.68 0.92 pFCii 211.6 9.2 9.2 pFCli 4.6 1.84 1.84 pF

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 42/72

    SVMA Design

    I Basic-parameter analytical estimation

    Parameter SVMA1 SVMA2 SVMA3,4 Units

    fb = CiiCssi+Cii 0.77 0.71 0.91

    Cleffi = Cli + (1 fb)Cii 53.4 4.47 2.68 pF

    Cleffi/Cli 11.6 2.43 1.46

    Aopen = 1fbsett 71.4 72 69.9 dB

    SR = Vsteptslew 46 61.3 15.3Vs

    Imax = SR Cleffi 2.46 0.274 0.041 mA

    GBW = ln 1sett

    2fbtsett77.9 83.9 65.9 MHz

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 43/72

    Optimization FlowI Automated

    variable sweep

    I Increasedproductivity

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 44/72

    Sized SVMA1

    I Optimum values:

    kb 4kz 3

    ICin 2ICtail 4ICmirr 6

    Itail 950 A

    I Minimum-channel-length devices used

    I Bias for cascodetransistors optimizedfor maximum outputfull scale

    I 1.8-V nominal voltagesupply of the CMOStechnology

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 45/72

    SVMA1 DC Transfer Curve

    I Minimal deviation underdifferent process andtemperature conditions

    I Class-AB achieves about4 bias current

    1 0.5 0 0.5 10

    0.5

    1

    1.5

    2

    Ionnkb

    Ionpkb

    (Iinp Iinn) /Itail [Itail]

    [Ita

    il]

    typical at 20 Cfast at -40 Cslow at 80 C

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 46/72

    SVMA1-Parameter ExtractionI Open-loop-gain and settling-time compliance with specifications

    Parameter typical20 Cfast

    -40 Cslow80 C Units

    Aopen 74.1 74.7 73.9 dBSR 139 146 133 Vs

    Imax 7.41 7.8 7.1 mAGBW 221 250 206 MHzPM1 54 46.9 60.7 PM 55.8 48.9 62.8 tint 16.41 14.24 19.57 ns

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 47/72

    All-SVMA-Parameter ExtractionI Open-loop-gain and settling-time compliance with specifications

    Parameter SVMA1 SVMA2 SVMA3,4 UnitsAopen 74.1 72.1 70.5 dB

    SR 139 36.2 26 VsImax 7.41 0.162 0.07 mAGBW 221 95.4 70.9 MHzPM1 54 77.8 83.1 PM 55.8 80.2 83.6 tint 16.41 25.75 19.82 ns

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 48/72

    SVMA Device SizesParameter SVMA1 SVMA2 SVMA3,4 Units

    Ccmfb 8050 437 218 fFIa1 250 50 50 AIa2 237.5 50 50 AIb 200 50 50 A

    (W/L)MA1 7.48/0.24 1.58/0.24 1.58/0.24 m/m(W/L)MA2 2.7/0.24 0.57/0.24 0.57/0.24 m/m(W/L)MB1,2 28.48/0.48 7.12/0.48 7.12/0.48 m/m(W/L)MB3 154.24/0.48 38.56/0.48 38.56/0.48 m/m(W/L)MC1,2 478.72/0.24 12.64/0.24 6.32/0.24 m/m(W/L)MC3,4 172.8/0.24 4.56/0.24 2.28/0.24 m/m(W/L)MD1,2 59.84/0.24 3.15/0.24 3.16/0.24 m/m(W/L)MD3,4 21.6/0.24 1.14/0.24 1.14/0.24 m/m(W/L)MG1,2 957.44/0.24 25.2/0.24 12.64/0.24 m/m(W/L)MG3,4 345.6/0.24 9.12/0.24 4.56/0.24 m/m(W/L)MI1,2 129.6/0.24 6.8/0.24 3.4/0.24 m/m(W/L)MI3,4 359.04/0.24 18.96/0.24 9.44/0.24 m/m(W/L)ML1,2 957.44/0.24 25.2/0.24 12.64/0.24 m/m(W/L)ML3,4 345.6/0.24 9.12/0.24 4.56/0.24 m/m(W/L)MSN 16/0.18 0.96/0.18 0.48/0.18 m/m(W/L)MSP 144/0.18 8.64/0.18 4.32/0.18 m/m(W/L)MT1 270.56/0.48 14.24/0.48 7.12/0.48 m/m(W/L)MT2 732.64/0.48 38.56/0.48 19.28/0.48 m/m(W/L)MU1,2 239.36/0.24 12.6/0.24 6.32/0.24 m/m(W/L)MU3,4 86.4/0.24 4.56/0.24 2.28/0.24 m/m(W/L)MZ1,2 179.52/0.24 9.45/0.24 3.16/0.24 m/m(W/L)MZ3,4 64.8/0.24 3.42/0.24 1.14/0.24 m/m

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 49/72

    Feedforward-Switch Optimization

    I Equivalent switching scheme

    I Trade-off between the switch conductor capabilities and parasitics

    I Design-time reduction

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 50/72

    Feedforward-Switch OptimizationI 126-dB SDR

    reached for theworst-case corner

    103 104 105 106

    0

    50

    100

    150

    200

    Frequency [Hz]

    Powe

    rspe

    ctra

    lden

    sity

    [dB F

    S/bi

    n]

    typical at 20 Cfast at -40 Cslow at 80 C

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 51/72

    Full-M SimulationI 105.7-dB SQNDR

    reached in theworst case

    I 16.5-hoursimulation timefor 64 input-signalsine periodson Intel CoreTMCPU i7-2600 @3.40 GHz

    103 104 105 106

    0

    20

    40

    60

    80

    100

    120

    140

    16080 dB/dec

    Frequency [Hz]

    Powe

    rspe

    ctra

    lden

    sity

    [dB F

    S/bi

    n]

    typical at 20 Cfast at -40 Cslow at 80 C

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 52/72

    CMOS Physical DesignI Standard analog layout-design techniques

    I Gate noise:

    V 2n,g =4kBT3m2

    WL R

    I Input-referred channel noise:

    V 2n,ch =8kBT3gm

    I Minimum finger number for wide-channeldevices (Vn,ch/Vg,ch = 5):

    m = 3.5

    WL Rgm

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 53/72

    SVMA1 Post-Layout Simulation Results

    I Open-loopfrequencyresponse

    I 200-pF loadcapacitance

    103 104 105 106 107 108 109

    0

    60

    120

    180

    Frequency [Hz]

    Phase[]

    PhaseGain

    01020304050607080

    72 dB

    50 Differentia

    lGain[dB]

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 54/72

    SVMA1 Post-Layout Simulation Results

    I Step response for several load conditions

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    1

    0

    1

    2

    Time Input Frequency [-]

    Differentia

    lOutpu

    tVo

    ltage

    [V]

    650 F at 1 Hz, 650 nF at 1 kHz 650 pF at 1 MHz

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    1

    0

    1

    2

    Time Input Frequency [-]

    Differentia

    lOutpu

    tVo

    ltage

    [V]

    650 F at 1 Hz, 650 nF at 1 kHz 650 pF at 1 MHz

    I Stability robustness

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 55/72

    M Post-Layout Simulation

    I Spectretransient-noisemode

    J 2-monthsimulation timefor 64 input-signalsine periodson Intel XeonCPU E5-2640 @2.50 GHz

    I 103-dB SNDR

    I 108.7-dB DR103 104 105 106

    0

    20

    40

    60

    80

    100

    120

    140

    16080 dB/dec

    Frequency [Hz]

    Powe

    rspe

    ctra

    lden

    sity

    [dB F

    S/bi

    n]

    Without transient noiseWith transient noise

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 56/72

    Test-Vehicle Integration

    I Standard 0.18-m 1P6M MIM CMOS technology

    I 4.9-mm2 area

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 57/72

    SVMA1

    I 0.07-mm2 area

    I Additional inputfor the externalCMFB control

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 58/72

    Full-M

    I 1.8-mm2 area

    I No need forglobal symmetry

    I Separate analogand digital 1.8-Vsupplies

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 58/72

    1 Introduction

    2 -Modulator Architectures

    3 Low-Power CMOS Switched-Capacitor Circuits

    4 Practical M Design in a 0.18-m CMOS Technology

    5 Experimental Results

    6 Conclusions

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 59/72

    SVMA Measurement Setup

    I Unity-gain transient-response measurement

    I Continuous-time operation

    I External CMFB control

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 60/72

    SVMA Step Response

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 61/72

    SVMA Full-Scale Evaluation

    0 20 40 60 80 100 120 140 160 180 2002

    1

    0

    1

    2

    Time [ms]

    Differentia

    lOutpu

    tVo

    ltage

    [V]

    IdealSimulatedMeasured

    0 20 40 60 80 100 120 140 160 180 2002

    1

    0

    1

    2

    Time [ms]

    Differentia

    lOutpu

    tVo

    ltage

    [V]

    IdealSimulatedMeasured

    I 3.3-Vpp differential full scale at 1.8-V voltage supply

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 62/72

    SVMA Figure-of-Merit Comparison

    Parameter [10] [11] [12] [13] [14] Thiswork Units

    Technology 0.5 0.5 0.25 0.13 0.18 0.18 mSupply 2 2 1.2 1.2 0.8 1.8 VDC gain 43 45 69 70 51 72 dBCload 80 25 4 5.5 8 200 pFGBW 0.725 11 165 35 0.057 86.5 MHzPhase margin 89.5 N/A 65 45 60 50 Slew rate, SR 89 20 329 19.5 0.14 74.1 V/sStatic power, P 0.12 0.04 5.8 0.11 0.0012 11.9 mWArea 0.024 0.012 N/A 0.012 0.057 0.07 mm2Resistor-free No No Yes Yes Yes Yes mm2FOM 59.33 12.50 0.28 0.98 0.93 1.25 Vs

    pFW

    FOM = SRCloadP

    [Vs

    pFW

    ]

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 63/72

    M-DUT Packaging

    I Dual-in-line 16-pinceramic packaging

    I Top and bottomshielding layers

    I In-packagenoise-decouplingcapacitors

    I Interference and noisereduction

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 64/72

    M MeasurementSetup

    I Ultra-low-distortionfunction generator asa input-signalgenerator

    I Low-jitter pulsegenerator as a inputclock timebase

    I Low-noisebattery-based powersupplies andreferences

    I Flexible FPGA-basedreadout system

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 65/72

    M Measurement Results

    I 2.4-Vppdifferential fullscale

    I -2-dBFS inputamplitude

    I 80-dB/decadenoise-shapingslope observed

    103 104 105 106

    0

    20

    40

    60

    80

    100

    120

    140

    16080 dB/dec

    Frequency [Hz]

    Powe

    rspe

    ctra

    lden

    sity

    [dB F

    S/bi

    n]

    SimulatedMeasured

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 66/72

    M Measurement Results

    I 96.6-dB SNDR

    I 105.3-dB SFDR

    I 97-dB DR

    I SNDRdegradation athigh amplitudes isavoided

    100 80 60 40 20 00

    20

    40

    60

    80

    100

    Input Amplitude [dBFS]

    SNR,

    SFD

    R,SN

    DR

    [dB]

    SNDRSFDRSNR

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 67/72

    ADC Performance Comparison

    [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] ThisworkArchitecture SC

    CT,SC

    SC

    CT,SC

    CT

    SRC

    SC

    SC

    SC INC

    CT

    Pipe+SAR

    SC

    SC

    Technology 0.35 0.35 0.25 0.18 0.18 0.13 0.18 0.18 0.35 0.16 0.18 0.18 0.18 0.18 m

    Supply voltage 5 3.3 1.8 0.9 1.8 0.7 1.5 1.8 5, 1.8 5 1.8 V

    Diff. full scale 6.6 5.7 1.4 1.1 1.8 10 4.4 2.4 VppSampling rate 5.12 6.14 20 6.14 41.7 6.14 45.2 5 2.4 0.05 57.5 5 0.15 13.6 MSsBandwidth 20 20 1000 20 200 24 500 25 20 0.0125 600 2500 0.1 50 kHz

    Supply power 55 18 475 37 210 1.5 38 0.87 0.14 0.0063 21 30.5 0.505 7.9 mW

    Area 5.6 0.82 20.2 0.65 6 1.44 3.5 2.16 0.21 0.38 0.99 5.74 0.8 1.8 mm2

    DR 111 106 103 102 98 92 90.1 100 92.6 100.2 97 dB

    SFDRmax 97 90 100.8 105.3 dB

    SNDRmax 105 97 95 90 89 86.3 95 87.9 98.6 100.6 96.6 dB

    FOMW 9458 7776 2057 20122 20311 1357 2251 378.5 173 314.8 678.2 87.7 28825 1429 fJconvFOMS 160.6 157.5 166.2 152.3 149.8 161.0 157.5 169.6 169.5 182.8 164.6 177.7 153.6 164.6 dB

    Bootstrap-free Yes Yes Yes Yes Yes Yes No No No Yes Yes Yes Yes Yes

    Calibration-free Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 68/72

    Performance Comparison

    20 30 40 50 60 70 80 90 100 110 120100

    101

    102

    103

    104

    105

    106

    107

    SNDR [dB]

    P/f sn

    yq[p

    J]

    FlashFoldingPipeline

    SARCT SC

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 68/72

    Performance Comparison

    85 90 95 100 105 110 115 120

    104

    105

    106

    107FOMS = SNDR + 10 log

    (BW

    P

    )

    [28][29]

    [15][18]

    [19]

    [20]

    [27]

    [30]

    [17] [24]

    [25]

    [31]

    [32]

    [33]

    [16]

    [21] [22]

    [23]

    [26]

    Thiswork

    SNDR [dB]

    P/f sn

    yq[pJ]

    Feature-compliantOthers

    FOMS of this work

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 68/72

    1 Introduction

    2 -Modulator Architectures

    3 Low-Power CMOS Switched-Capacitor Circuits

    4 Practical M Design in a 0.18-m CMOS Technology

    5 Experimental Results

    6 Conclusions

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 69/72

    Contributions

    I Initial working hypotheses successively tested and confirmed: High-resolution and low-power state-of-the-art ADC Integrated in a low-cost standard CMOS technology Using novel analog design techniques at the system and circuit

    levels No bootstrapping, analog calibration or digital

    post-compensationI Selection guide of SC M ADCsI Efficient framework based on open-source EDA toolsI New family of single-stage Class-AB OpAmps: VMAsI SVMA- and M-demonstrator implementation and measurements

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 70/72

    Research Funding

    2007-2011: Chemical Warfare Agents Analyzer Based onLow Cost Dual Band IR Microsystem (CANARIO)EDA-B-DO61-IAP2-ERG:32-channel read-out low-power IC

    2009-2012: Perishable Monitoring through Short Tracking ofLifetime and Quality by RFID (PASTEUR)CATRENE CT204:Low-power smart sensor with integratedpotentiostatic ADC

    2011-2015: ESA Cosmic Vision MF ASICESTEC 40000101556/10/NL/AF:4 low-power ADCs with multiple BWs and SNDRs

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 71/72

    Publications

    I 11 papers: 9 published (2 awarded) 2 being disseminated:

    [+] S. Sutula, M. Dei, L. Ters, and F. Serra-Graells, Variable-MirrorAmplifier: A New Family of Process-Independent Class-ABSingle-Stage OpAmps for Low-Power SC Circuits, submitted to theIEEE Transactions on Circuits and Systems I.

    [+] S. Sutula, M. Dei, L. Ters, and F. Serra-Graells, ACalibration-Free 96.6-dB-SNDR Non-Bootstrapped 1.8-V 7.9-mWDelta-Sigma Modulator with Class-AB Single-StageSwitched-OpAmps, submitted to the IEEE InternationalSymposium on Circuits and Systems, Montreal, 2016.

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 72/72

    Future Work

    I Integration on the same die with the sensor array

    I LVDS-bus implementation

    I Decoupling-capacitor increase

    I Multi-bit-M exploration

    I Reuse of low-current design techniques in the low-voltage realm

    Thank you!

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 72/72

    References[1] S. Sutula, M. Dei, L. Ters, and F. Serra-Graells, Class-AB Single-Stage

    OpAmp for Low-Power Switched-Capacitor Circuits, in Proceedings of the IEEEInternational Symposium on Circuits and Systems, pp. 20812084, 2015,Student Best Paper Award Honorable Mention.

    [2] S. Sutula, F. Vila, J. Pallars, K. Sabine, L. Ters, and F. Serra-Graells,Teaching Mixed-Mode Full-Custom VLSI Design with gaf, SpiceOpus andGlade, in Proceedings of the 10th European Workshop on MicroelectronicsEducation, pp. 4348, 2014.

    [3] J. Pallars, F. Vila, S. Sutula, K. Sabine, L. Ters, and F. Serra-Graells, AFreeware EDA Framework for Teaching Mixed-Mode Full-Custom VLSI Design,in Proceedings of the XIX Conference on Design of Circuits and IntegratedSystems, 2014.

    [4] S. Sutula, J. Pallars Cuxart, J. Gonzalo-Ruiz, F. Xavier Munoz-Pascual,L. Ters, and F. Serra-Graells, A 25-uW All-MOS Potentiostatic Delta-SigmaADC for Smart Electrochemical Sensors, IEEE Transactions on Circuits andSystems I: Regular Papers, vol. 61, pp. 671679, 2014.

    [5] J. Pallars, S. Sutula, J. Gonzalo-Ruiz, F. X. Muoz-Pascual, L. Ters, andF. Serra-Graells, A Low-Power MOS-Only Potentiostatic Delta-Sigma ADCArchitecture for Electrochemical Sensors, in Proceedings of the XIX Conferenceon Design of Circuits and Integrated Systems, 2014, Best Paper Award.

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 72/72

    [6] S. Sutula, C. Ferrer, and F. Serra-Graells, Design and Modeling of a Low-PowerMulti-Channel Integrated Circuit for Infrared Gas Recognition, ElsevierMicroprocessors and Microsystems, vol. 36, pp. 355364, 2012.

    [7] S. Sutula, C. Ferrer, and F. Serra-Graells, A 400 W Hz-Range Lock-In A/DFrontend Channel for Infrared Spectroscopic Gas Recognition, IEEETransactions on Circuits and Systems I: Regular Papers, vol. 58, pp. 15611568,2011.

    [8] S. Sutula, C. Ferrer, and F. Serra-Graells, A 100A/Ch Fully-Integrable Lock-inMulti-Channel Frontend for Infrared Spectroscopic Gas Recognition, inProceedings of the IEEE International Symposium on Circuits and Systems,pp. 22672270, 2010.

    [9] S. Sutula, C. Ferrer, and F. Serra-Graells, Design and Modeling of a 0.4mW/ChMulti-Channel Integrated Circuit for Infrared Gas Recognition, in Proceedings ofthe XXV Conference on Design of Circuits and Integrated Systems, pp. 226271,2010.

    [10] A. J. Lpez-Martn, S. Baswa, J. Ramirez-Angulo, and R. G. Carvajal,Low-Voltage Super Class AB CMOS OTA Cells With Very High Slew Rate andPower Efficiency, IEEE Journal of Solid-State Circuits, vol. 40, pp. 10681077,2005.

    [11] J. Ramirez-Angulo, R. G. Carvajal, J. A. Galan, and A. Lopez-Martin, A FreeBut Efficient Low-Voltage Class-AB Two-Stage Operational Amplifier, IEEE

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 72/72

    Transactions on Circuits and Systems II: Expressed Briefs, vol. 53, pp. 568571,2006.

    [12] M. Yavary and O. Shoaei, Very Low-Voltage, Low-Power and Fast-Settling OTAfor Switched-Capacitor Applications, in Proceedings of the InternationalConference on Microelectronics, pp. 1013, 2002.

    [13] M. Figueiredo, R. Santos-Tavares, E. Santin, J. Ferreira, G. Evans, and J. Goes,A Two-Stage Fully Differential Inverter-Based Self-Biased CMOS AmplifierWith High Efficiency, IEEE Transactions on Circuits and Systems I: RegularPapers, vol. 58, pp. 15911603, 2011.

    [14] M. R. Valero, S. Celma, N. Medrano, B. Calvo, and C. Azcona, An UltraLow-Power Low-Voltage Class AB CMOS Fully Differential OpAmp, inProceedings of the IEEE International Symposium on Circuits and Systems,pp. 19671970, 2012.

    [15] Y. Yang, A. Chokhawala, M. Alexander, J. Melanson, and D. Hester, A 114-dB68-mW Chopper-Stabilized Stereo Multi-bit Audio A/D Converter, inProceedings of the IEEE International Solid-State Circuits Conference,pp. 56477, 2003.

    [16] K. Nguyen, B. Adams, K. Sweetland, H. Chen, and K. McLaughlin, A 106dBSNR Hybrid Oversampling ADC for Digital Audio, in Proceedings of the IEEEInternational Solid-State Circuits Conference, pp. 176591, 2005.

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 72/72

    [17] R. Brewer, J. Gorbold, P. Hurrell, C. Lyden, R. Maurino, and M. Vickery, A100dB SNR 2.5MS/s Output Data Rate ADC, in Proceedings of the IEEEInternational Solid-State Circuits Conference, pp. 172173, 2005.

    [18] P. Morrow, M. Chamarro, C. Lyden, P. Ventura, A. Abo, A. Matamura,M. Keane, R. OBrien, P. Minogue, J. Mansson, N. McGuinness,M. McGranaghan, and I. Ryan, A 0.18m 102dB-SNR Mixed CT SCAudio-Band ADC, in Proceedings of the IEEE International Solid-StateCircuits Conference, pp. 178592, 2005.

    [19] P. Silva, L. Breems, K. Makinwa, R. Roovers, and J. Huijsing, An 118dB DRCT IF-to-Baseband Modulator for AM/FM/IBOC Radio Receivers, inProceedings of the IEEE International Solid-State Circuits Conference,pp. 151160, 2006.

    [20] M. Kim, G. Ahn, P. Hanumolu, S. Lee, S. Kim, S. You, J. Kim, G. Temes, andU. Moon, A 0.9V 92dB Double-Sampled Switched-RC Audio ADC, inSymposium on VLSI Circuits Digest of Technical Papers, pp. 160161, 2006.

    [21] A. Agah, K. Vleugels, P. Griffin, M. Ronaghi, J. Plummer, and B. Wooley, AHigh-Resolution Low-Power Oversampling ADC with Extended-Range forBio-Sensor Arrays, in Symposium on VLSI Circuits Digest of Technical Papers,pp. 244245, 2007.

    [22] H. Park, K. Nam, D. K. Su, K. Vleugels, and B. A. Wooley, A 0.7-V 100-dB870-W Digital Audio Modulator, in Symposium on VLSI Circuits Digest ofTechnical Papers, pp. 178179, 2008.

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 72/72

    [23] T. Christen, A 15bit 140W Scalable-Bandwidth Inverter-Based Audio Modulator with >78dB PSRR, in Proceedings of the European Solid-StateCircuits Conference, pp. 209212, 2012.

    [24] Y. Chae, K. Souri, and K. Makinwa, A 6.3W 20b Incremental Zoom-ADC with6ppm INL and 1V Offset, in Proceedings of the IEEE International Solid-StateCircuits Conference, pp. 276277, 2013.

    [25] A. Bandyopadhyay, R. Adams, N. Khiem, P. Baginski, D. Lamb, and T. Tansley,A 97.3 dB SNR, 600 kHz BW, 31mW Multibit Continuous Time ADC, inSymposium on VLSI Circuits Digest of Technical Papers, pp. 12, 2014.

    [26] A. Bannon, C. Hurrell, D. Hummerston, and C. Lyden, An 18 b 5 MS/s SARADC with 100.2 dB Dynamic Range, in Symposium on VLSI Circuits Digest ofTechnical Papers, pp. 12, 2014.

    [27] L. Xu, B. Gnen, Q. Fan, J. Huijsing, and K. A. A. Makinwa, A 110dB SNRADC with 30V Input Common-Mode Range and 8V Offset for CurrentSensing Applications, in Proceedings of the IEEE International Solid-StateCircuits Conference, pp. 9091, 2015.

    [28] Y. Matsuya and J. Terada, 1.2-V, 16-bit Audio A/D Converter With SuppressedLatch Error Noise, in Symposium on VLSI Circuits Digest of Technical Papers,pp. 1920, 1997.

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 72/72

    [29] Y. Geerts, M. Steyaert, and W. Sansen, A 2.5MSample/s Multi-Bit CMOSADC with 95dB SNR, in Proceedings of the IEEE International Solid-StateCircuits Conference, pp. 336337, 2000.

    [30] E. Zwan, A 2.3 mW CMOS Modulator for Audio Applications, inProceedings of the IEEE International Solid-State Circuits Conference,pp. 220221, 1997.

    [31] K. Y. Leung, E. J. Swanson, K. Leung, and S. S. Zhu, A 5V, 118dB Analog-to-Digital Converter for Wideband Digital Audio, in Proceedings of theIEEE International Solid-State Circuits Conference, pp. 218219, 1997.

    [32] A. L. Coban and P. E. Allen, A 1.5V 1.0mW Audio Modulator with 98dBDynamic Range, in Proceedings of the International Solid-State CircuitsConference, pp. 5051, IEEE, 1999.

    [33] K. Vleugels, S. Rabii, and B. A. Wooley, A 2.5V Broadband Multi-Bit Modulator with 95dB Dynamic Range, in Proceedings of the IEEE InternationalSolid-State Circuits Conference, pp. 5051, 2001.

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 72/72

    Design Variables

    I Reduced set of input variables

    I Simplified SVMA-optimization process

    I Automated result back-annotation

    Stepan Sutula

  • Low-Power High-Resolution CMOS SC ADCs Intro Ms Circuits Design Results Conclusions 72/72

    SVMA1 DC Transfer Curve versus kz

    b03v02

    Stepan Sutula

    Introduction-Modulator ArchitecturesLow-Power CMOS Switched-Capacitor CircuitsPractical M Design in a 0.18-m CMOS TechnologyExperimental ResultsConclusions