Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a...

15
Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila [email protected] Trnava, 15.11.2012

Transcript of Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a...

Page 1: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

Phase transformation kinetics in a near-β titanium alloy

Pere Barriobero Vila

[email protected]

Trnava, 15.11.2012

Page 2: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

1- Goal 2- Experimental 2.1. Material

2.2. Techniques: - In Situ High Energy Synchrotron X-ray Diffraction (XRD) - Differential Scanning Calorimetry (DSC)

3- Results 3.1. Bimodal microstructure

3.2. Lamellar microstructure 3.3. Beta quenched microstructure

4- Summary

Content

2/15

Page 3: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

1- Goal

To study the phase transformation kinetics during continuous heating of a near-β titanium alloy with

different initial microstructures

Methods Differential Scanning Calorimetry (DSC) Identification of precipitation and dissolution processes In situ High Energy Synchrotron X-ray diffraction (XRD) Identification AND quantification of microstructural phases

3/15

Page 4: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

β transus

Temperature

Mo eq. (wt.%)

β Stabilizers Characteristics Aplications

808ºC 10,81%

• Excellent

Forgeability

• High strength

• High toughness

(air, salt water)

Aerospace industry

(variety of components)

2- Experimental

Ti-10V-2Fe-3Al

Near-β alloy

Leyens, 2003

2.1. Material

Handbook of Titanium Alloys, 2007

R.R. Boyer, JOM 2010

Boeing 777

Lütjering, 2007

β transus

α phase

β phase T (°C)

4/15

Page 5: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

2- Experimental 2.1. Material: Initial microstructures

50µm 40µm

Large α Lamellae

Lamellar

5 k/min

T (°C)

t (min)

TβTRANSUS

Ar Atmosphere

10µm

Small α Lamellae

Bimodal

3µm

T (°C)

t (h)

TβTRANSUS 763°C / 2 h

510°C / 8 h

Ar Atmosphere

Secondary α-lamellae

Primary α

50µm

Metastable β grains

Beta quenched

α‘‘ martensite

Water

quenching

T (°C)

t (min)

TβTRANSUS

Ar Atmosphere

ωath

β

5/15

Page 6: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

2- Experimental 2.2. Techniques: In Situ High Energy X-ray Diffraction

E. Aeby-Gautier, JOM 2007

20 k/min

T (°C)

t (min)

TβTRANSUS

Ar Atmosphere

900ºC ID15-ESRF

E= 87keV ʎ= 0.1426Å

Slit size = 0.3x0.3 mm²

Acquisition time = 2s

Readout time = 1s

Sample size = 4x4x10 mm³

MAUD

Quantitative

phase analysis

(Rietveld)

Image

processing

2D analysis

(calibration/integration/

image analysis)

Data processing

6/15

Page 7: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

Reference Sample

Alumina

Crucible

Alumina

Ti1023

Sample

Ø=5mm

L=1,6mm

2- Experimental 2.2. Techniques: DSC

20 k/min

T (°C)

t (min)

TβTRANSUS

Ar Atmosphere

900ºC

7/15

Page 8: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

3- Results

Bimodal

f (T)

2-Theta (°)

T (°C)

α (100)

α (002)

β (110)

α (101)

α (100)

α (002)

β (110)

α (101)

α+β→ β

Lamellar

f (T)

T (°C)

2-Theta (°)

Beta quenched

f (T)

T (°C)

2-Theta (°) α‘‘ (110)

α (100)

α (002)

α (101)

α‘‘ (020)

β (110)

α‘‘ (002)

α‘‘ (111)

TβTRANSUS α+β→ β

8/15

Page 9: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

3- Results 3.1. Bimodal microstructure

Two dissolution processes may indicate sequential dissolution of α secondary α primary

Ti64, P. Barriobero Vila, Master‘s

Thesis

Start α+β→ β DSC T~ 425-450 °C XRD T~ 450-500°C

End α+β→ β DSC T~ 875°C

aβ shows a sudden increase

at T=500°C Diffusion of alloying elements

Primary α

50µm

3µm

Secondary α-lamellae

exo

9/15

Page 10: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

50µm 40µm

Large α Lamellae

10µm

Small α Lamellae

3- Results 3.2. Lamellar microstructure

Assymetric endotermic peak may indicate sequential dissolution of smaller and larger lamellae

Ti17, E. Aeby-Gautier, JOM 2007

Stabilization of alpha content between ~400<T<575ºC increase from ~ 65wt% to ~75wt%

exo

Start α+β→ β DSC T~ 500-550°C XRD T ~ 575°C

End α+β→ β DSC T~ 875°C

aβ shows a sudden increase at

T=500°C

Diffusion of alloying elements

10/15

Page 11: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

900°C β

exo

Metastable β grains

α‘‘ martensite

ω

282°C ω+β +α’’

Start α+β→ β DSC T~ 575 °C

End α+β→ β DSC T~ 855°C XRD: Beta quenched microstructure shows the

presence of stable α and β

plus metastable ωath, ω, α’’, α’’iso phases at different stages during heating

3- Results 3.3. Beta quenched microstructure

390°C ω+β +α’’

α

577°C β+α

437°C β + α’’iso.

• Ivasishin, Materials

Science and

Engineering 2005

• E. Aeby-Gautier,

Journal of Alloys and

Compounds 2012

Azim

uth

(°)

2-Theta (°)

150°C

β α‘‘

ωath.(TEM)+β+α’’

11/15

Page 12: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

Metastable β grains

α‘‘ martensite

3- Results 3.3. Beta quenched microstructure

12/15

5k/min 390°C

20°C 390°C 425°C 540°C

5 k/min

Page 13: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

4- Summary

• In Situ High Energy XRD:

Reveals the phases and its weight/volume fraction as f(T)

The faster increase of the aβ cell parameter at a threshold temperature of 500ºC

may be due to the diffusion of alloying elements into β phase (Al, Fe and/or V)

• DSC:

Reveals that the α phase (identified by XRD) dissolves at different stages

depending on its morphology fine lamella start to dissolve earlier than coarse

lamellae or globular α

- The bimodal and lamellar microstructures show the presence of α and β

phases at different stages during heating (no metastable phases were

observed)

- The beta quenched microstructure presents a much more complex phase

transformation kinetics as a consequence of the formation of the metastable

phases α’’, α’’iso, ωath, ω 13/15

Page 14: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

4- Summary

Bimodal starts earlier due to the presence of smaller α-lamellae higher surface energy

Outlook:

- Metallography of microstructures frozen at different stages during

heating to confirm the dissolution sequence of the different α

morphologies

- The complex phase transformation kinetics of the Beta quenched

microstructure will be quantified by Rietveld analysis.

Microstructure

Start α+β→ β Temperature (ºC)

aβ Increasing

temperature

(ºC)

End α+β→ β Temperature (ºC)

DSC XRD DSC

Bimodal 425-450 450-500 500 875

Lamellar 500-550 575 500 875

Beta quenched 575 - - 850

14/15

Page 15: Phase transformation kinetics in a near-β titanium alloy · Phase transformation kinetics in a near-β titanium alloy Pere Barriobero Vila pere.vila@tuwien.ac.at Trnava, 15.11.2012

David Lorrain (DSC), Georg Fiedler (Programming), David

Canelo (XRD data processing), Martin Stockinger (Ti-alloys),

Sabine Schwarz (TEM), Fernando Warchomicka, Guillermo

Requena

Beamline Scientist:

Thomas Buslaps (ESRF-ID15)

Acknowledgements

15/15